
Fundamentals of Fundamentals of NanoelectronicsNanoelectronics

Prof. Supriyo Datta
ECE 453
Purdue University

Network for Computational Nanotechnology

09.20.2004

Lecture 11:  Finite Difference Method
Ref. Chapter 2.2



Φ⎥
⎦

⎤
⎢
⎣

⎡
+−=Φ )(

2 2

22

xU
dx
d

m
E h

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

NN

E
φ

φ
φ

φ

φ
φ

MM
2

1

2

1

x

1     2     3    n-1  n   n+1       N

a

• As it was mentioned before all numerical 
methods for solving differential equations 
involve some scheme to covert the original 
equation into a matrix equation. What we do 
here is to discretize the lattice and then we write 
the second derivative as a difference equation. 
• Figure on the left shows the discrete points. 
As it can be seen corresponding to each lattice 
point there is a value for the wave function. This 
can also be viewed as sampling of a continuous 
function into discrete values. Remember that in 
order to be able to perform a numerical method 
we have to a have a finite number of equations 
so that we can solve them.
• To make things easier, for now we set      
U(x)=0. Note that the matrix for U can be 
written down easily and it can later be 
added to the matrix that represents the 
differential operator which we now we’ll try 
to find…
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Time Independent Schrödinger 
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• What goes in the parenthesis is the 
discrete representation of the differential 
operator.
• So to turn this differential equation to a 
difference equation, the most important 
step is to write the second derivative as a 
difference expression. We start with the 
difference equation for the first 
derivative…
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At each particular point the Schrödinger 
equation (after dropping U) can be written 
as:

Now start from left and right everything at 
point n. The constants remain the same. 
For the wavefunction we right its value at 
that particular point. We will have:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

m
E n 2

2hφ

[ ]
n

n

xx
xx dx

d
m

E
=

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Φ
−= 2

22

2
hφ

From Derivatives to 
Differences 1

06:54



Consider the lattice in the a vicinity of the 
nth point. 

In order to right the derivative of the 
function at n we need to know its values 
close to n. 
This can be done by calculating the 
amount by which the value of wave 
function changes as moving from one 
lattice point to another. This gives us the 
first derivative. The second derivative is 
of course the difference of the first 
derivatives.

• The amount by which the function 
changes going from n-1 to n divided by 
the distance between the two points is the 
first derivative.    

• Notice that the closer the lattice points 
the better the approximation.
• What do we do now to get the second 
derivative at n? Subtract the first 
derivative at n-1/2 from the first derivative 
at n+1/2  and again divide by the distance 
(a) between them 
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• The second derivative is: 

• Where  

• So 

• And finally our Schrödinger equation 
becomes:

• This was the essence of the finite 
difference method. The equation above is 
the Schrödinger equation at a particular 
point n. There are  N of these equations. 
All together they can be written as a matrix 
equation. To make things more compact 
and elegant define:

and take the negative sign inside to get:
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• We now  want to see how  these 
equations 

Become a  matrix.

To see this observe that the nn element in 
the matrix is what multiplies      
There are two more non-zero entries to the 
left and the right of nn element. They are 
the factors that multiply                       
and are both equal to –t0. Same analysis 
goes for every row to get the matrix 
equation on the right:

• At this point we can add the matrix of U 
to the matrix above: this is basically 
adding the values of U(x) at each point of 
the lattice to the corresponding diagonal 
element of the matrix above. (Remember 
that U is diagonal)
• There is one point that needs to be 
taken care of and that is the boundary 
conditions marked by a ? in the above 
matrix…
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• The easiest boundary condition to 
implement is to assume that the 
wavefunction is 0 at the two ends of the 1-
D lattice. Notice that the issue of boundary 
conditions comes in play because we want 
to have a finite dimensional matrix. So we 
have to end it somewhere and that brings 
about boundaries. 

• This assumption is an exact one if we 
were to describe the energy levels of a 
particle with infinite potential walls. In that 
case there would be no way for the 
wavefunction to leak outside of the box. 
However if the potential walls were not 
infinite, there would be some leakage. In 
that case we increase the lattice size to 
incorporate non-zero values of the 
wavefunction. One point to notice is that 
the potential would have 2 different values 
inside and outside of the box which can 
easily be entered in the Hamiltonian 
matrix. (We just add what ever potential 
we have the diagonal element 
corresponding to the lattice points.)
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• In the following weeks we’ll be talking 
about the energy levels of solids. One very 
interesting point about metals and 
semiconductors is that the electronic levels 
can be obtained from a slightly modified 
Schrödinger equation. 
• The modification is in the value of m. 

• Whereas the value of m in the equation 
above is the actual mass of electron, the 
modified m denoted by       is not. It is 
called the effective mass. It incorporates 
the potential of the solids who have 
periodic structure. Using this concept, one 
can obtain the energy levels of such solids 
using what’s called an effective mass 
equation without having to enter…

…the value of U(x) which corresponds to 
the periodic nuclear potentials that exist in 
a solid.

• What this means is that given a piece of 
silicon, you could estimate the energy 
levels by solving a particle in a box 
problem which leads us to another point 
and that is the usage of periodic boundary 
conditions.
• Although the right boundary conditions 
to be used are infinite wall BCs, the 
periodic BCs are often used because of 2 
reasons: 1. It makes the math easy. 2. 
When trying to understand the energy 
levels deep in the middle of a solid, then 
what happens at the boundaries are not 
important. But what is periodic BC?
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Periodic Boundary 
Conditions 1

31:00

• The idea is as the name suggests. 
Considering the above lattice, on thinks of 
the Nth point as having the exact potential 
as the 0th point. The N+1 point would have 
the exact potential as the first point and so 
on. Notice that we’ve assumed that the 
period is N. 
• Knowing this, how can we modify the 
Hamiltonian matrix to obey the boundary 
conditions?
• Remember that what ever the boundary 
conditions are, they enter at the points 
indicted here….

• To implement the periodic boundary 
conditions thin like this:
We’ve assumed the solid to be like a ring 
meaning the Nth point is the same as the 
0th point. 
Ordinarily point one is connected to the 
0th point described by –t0.  But now point 0 
is point N. 
Indeed what happens is that point N is 
connected to point 1 via –t0. As the result 
this value seats in the place of the matrix 
element that connects N to 1.

Equation 1 now becomes:

How about the other diagonal element?
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• Using the same idea, the other element 
will also be turn out to be –t0.
• This is consistent with postulates of 
quantum mechanics: We want the eigen
values of the Hamiltonian matrix to be 
real. For this to happen, the H matrix must 
be Hermitian. If all the matrix elements 
are real then being Hermitian comes 
down to being symmetric. And symmetric 
means that we have to have –t0 for both 
of our diagonal elements that describe the 
boundary conditions:

• In general H must be Hermitian. This 
means that the matrix is the same as its 
conjugate transpose. 
• But why does this periodic boundary 
condition make things simpler? The 
answer lies in the properties of the 
exponential function as a solution of 
Schrödinger equation:

• For the box boundary conditions we had 
to consider the function sin(x) because 
the exponential doesn’t go to 0 at the 
ends. However the situation is different for 
periodic boundary conditions…
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• Indeed, the exponential           can be 
considered as a solution to Schrödinger 
equation with periodic boundary. The 
advantage of exponentials is that taking 
their derivatives is very easy, their 
magnitude squared is 1, ect. 
• Let’s see what this Per. BCs means for 
exponentials:

For the equation to hold we have to have:

• One last point:
It seems as if with exponentials we have 
half as much allowed values of k because 
they are       apart whereas for sin(x) 
values of k are only    apart.
• This is not true though. Because in the 
case of sin(x), the k and –k values 
produce two wavefunctions that are 
different just by a constant factor. This 
means that we don’t have two 
independent functions. For exponentials 
on the other hand, k and –k values 
produce two independent solutions. 
• Altogether we conclude that the number 
of k values in both cases are the same. 
For sin(x) all k values are positive and   
apart. For       are both positive and 
negative and       apart.
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