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Schrödinger equation 
(Matrix Form)

00:07

• Remember time independent Schrödinger 
equation:

• In one dimension (say in x) if we neglect 
the potential U, we’ll have:

• But is there any difference between the 
solutions of the matrix equation and the 
analytical solution? In particular how do 
the eigenvalues of the two methods 
compare to each other?
• The answer depends on the range of 
energy which is considered. For low 
energies the two answers match well 
whereas for high energies the two deviate 
from each other and of course it is the    

numerical answer obtained 
from the matrix on the left that 
is not quit right. Let’s discuss 
this more in depth: (See next 
page) 
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• Using finite difference method, we have this matrix equation:
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Numerical vs. Analytical 
eigenvalues

05:49
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• You can set up a matrix and ask Matlab to find the eigenvalues. The number of eigenvalues 
will be the same as the number of rows (or columns) of the matrix. For a 100 by 100 matrix, we 
get 100 eigenvalues. Plotting them versus energy gives us the figure below. 
• How does the answer look like analytically? For a constant potential, we know the answer 
analytically and that is a good bench mark for checking the numerical solution. So what are the 
analytical eigenvalues for 0 potential? 
• Schrödinger equation reads:                                         The solutions to this equation are the         

plane waves: exp (ikx) 
The eigenvalues are given by: 
Periodic boundary conditions require the solutions at 
the beginning and the end of the lattice to match:

The analytical eigenvalues look like a parabola 
whereas the numerical ones level off. Why do the  
answers match at low energies but not high energies?
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Wavefunction varies 
rapidly at high energies

12:01

• As it can be seen form the figure, the numerical solution deviates from the analytical one. 
The reason is that at low energies the wavefunction varies slowly whereas at high energies it 
changes very fast. If the lattice points are not close enough then the numerical solution fails to 
capture the whole physics and fails to give the right answer. Therefore we can trust the 
numerical eigenvalues at low energies and ignore them for higher values of energy.
• It turns out that for current flow the energy range of interest is a small region around the 
chemical potential. This is why we’re ok to use the numerical solution.

High Energy Wave: Infinite 
Square Well 
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• Why do the two answers deviate? The reason 
relies in turning the second order derivative to a 
difference equation.

• We will discuss this issue more when we talk 
about bandstructure.
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Effect of boundary 
conditions on solutions

15:20

• How do the boundary conditions 
affect the results? More specifically 
what is the difference between the 
eigenvalues for periodic boundary 
conditions versus box boundary 
conditions?
• For period boundary conditions we 
have the solutions:

• Both of these solutions give the 
same eigenvalue because –k and k 
give the same energy:

• The eigenvalues in this case come in 
pairs: at each energy there are two 
eigenvalues.
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• Using the box boundary conditions, the 
situation will be different. In that case there will 
be no pairs but the eigenvalues will be closer 
together. In this case they will be 
apart whereas in the previous case they were            
apart. Why?
• For the solutions we can have any linear 
combination of exponentials that satisfy box 
boundary conditions:

• The box boundary conditions tells us that the 
wavefunction has to go to 0 at the ends.

• Notice that –k and k values give two 
wavefunctions that are not linearly independent 
and hence they are not separate solutions.
• In both cases we have the same number of 
eigenvalues.
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Separation of variables 
(reasons/conditions)

23:58

• How do we solve Schrödinger equation in 
two dimensions?
• The equation reads:

• Just as we set up a lattice in 1 dimension, 
we can set up a lattice in two dimensions.

• Then we have to turn the equation into a 
matrix equation.
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• The wavefucntion vector in the matrix 
form has the value of the wavefincion at 
each discrete lattice point. For this lattice 
we will have N^2 values. This means that 
the matrix size will be N^2 by N^2. As N 
gets large, it will be hard for the computer 
to calculate its eigenvalues.
• We can see that this makes it hard to 
solve problems in higher dimensions 
because of the limited power of computers.
• For higher dimensions we use another 
method called separation of variables. This 
method can be used only if the potential 
satisfies certain conditions. If it is so, then 
the big problem in higher dimensions can 
be broken into small problems in lower 
dimensions.
• How does this method work and what 
condition should the potential satisfy?



Method of Separation of 
variables

30:00

• If the potential has the following property:

• Then separation of variables can be used 
to give the wavefunction as:

• We can find X and Y by solving the 
following equations:

• One thing that we can show easily is that if 
we combine these two equations we can get 
back the original 2-D Schrödinger equation.

(0)      )()(),( yYxXyx ×=Φ

)()(),( yUxUyxU yx +=

(1)    )(X)(
2

)( 2

22

xxU
xm

xXE xx ⎥
⎦

⎤
⎢
⎣

⎡
+

∂
∂−

=

(2)     )()(
2

)( 2

22

yYyUy
ym

yYEy ⎥
⎦

⎤
⎢
⎣

⎡
+

∂
∂−

=

• To show this multiply (1) by Y(y) and (2) by 
X(x). In both cases we can put X or Y in 
front of the derivative operator because the 
derivative is with respect to another variable.

• From above we can see that:
• What we have gained is that if the potential 
can be separated into to parts the big 2-D 
problem can be broken into two 1-D 
problems which are a lot easier to solve.
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An example: particle in a 
box problem

36:31

• For particle in a 1-D box we 
had:

• How do we solve the problem 
of a particle in a 2-D box?
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• What are the solutions to the problem of a particle in 
a 2-D box? The eigenvalues become 

• We’ll have product solutions of X(x) and Y(y) for 
eigenfunctions:

• The eigenenergies are
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Separation of variables 
Energy Levels

43:01

• If we had solved the problem directly by 
setting up lattice with 100 points in each 
direction, we’d have a 10000 by 10000 
matrix, which would give us 10000 
eigenvalues. Here we have two lattices 
each with 100 points. That gives us a total 
of 200 eigenvalues. So what happened to 
the 10000?
• To answer this question have a look at:

• The point is you can pair a single 
eigenvalue in the x direction to any of the 
100 values in the y direction and vice versa. 
This gives you a total 10000 eigenvalues.
• It is important to remember that the 
method of separation of variables could be 
used only if the potential has the form:
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One point to notice is that with the method of 
separation of variables, one needs two 
indices to label the energy levels in 2-D and 
3 indices to label the energy levels in 3-D:

Energy levels in 2-D

(1,1)

(1,2) or (2,1)

2E0
5E0

8E0(2,2)

Energy levels in 3-D

(1,1,1)

(112,211,121)

3E0
6E0

9E0(122,212,221)
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