Introduction to Nanoelectronics

Prof. Supriyo Datta ECE 453

Purdue University

Lecture 13: Atomic Energy Levels

 Ref. Chapter 2.3 \& 3.1
3D Schrödinger Equation

- 3D Schrödinger equation is:

$$
E \Phi=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+U(\vec{r})\right) \Phi
$$

- Considering only one dimension:

$$
E \Phi=\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+U(x)\right) \Phi
$$

- We've learned how to turn this into a matrix equation using method of finite differences through which one can find the eigenvalues and eigenvectors.
- In 3D, we've discussed that the size of matrices can get very large if one tries to turn the whole 3D equation into a matrix equation. But under certain conditions we can use the idea of separation of variables which is very powerful in making the problem more tractable. (discussed last day)
- We can use Separation of variables if the potential can be written as:

$$
U(x, y, z)=U_{x}(x)+U_{y}(y)+U_{z}(z)
$$

-If that is satisfied the one 3 dimensional problem can be written as 3 one dimensional problems which is easier to handle.

- What we want to talk about today is how the energy levels look like for atoms. We start with the simplest of all atoms: hydrogen atom.
- The potential that the electron sees in the hydrogen atom is:

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

- The expression for "r" shows that this potential is not separable in Cartesian coordinates but it will be in spherical coordinates...

Spherical Coordinates

- In spherical coordinates the variables are:

- The potential in spherical coordinates depends only on " r " and it is separable. It can be written as 3 function of r, theta and phi where the function of and phi are basically zero.
- The hard thing about this coordinate system is that operators are much more complicate; hence more complicated to work with.

$$
\begin{aligned}
\nabla^{2} & \equiv \frac{\partial^{2}}{\partial x^{2}} \frac{\partial^{2}}{\partial y^{2}} \frac{\partial^{2}}{\partial z^{2}} \quad \text { In Cartesian coordinates } \\
& \equiv\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)
\end{aligned}
$$

Spherical Harmonics 1

- For potentials that are symmetric in "r" and do not depend on theta or phi one can write the solutions to the Schrödinger equation as:

$$
U(\vec{r})=-\frac{q^{2}}{4 \pi \varepsilon_{0} r}
$$

$$
\Phi(\mathrm{r}, \theta, \varphi)=\underbrace{\frac{f(r)}{r}}_{\text {Radial }} \underbrace{Y_{l}^{m}(\theta, \varphi)}_{\text {Angular }}
$$

- The function "f" can be found by solving a 1D equation: $E f(r)=\left(\frac{-\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}-U(\vec{r})+\ldots\right) \mathrm{f}(\mathrm{r})$
- The angular part is already known for any atom whose potential does not depend on theta or phi. One only has to find the redial part. The $Y(1, m)$ are called spherical harmonics. Let's discuss them more:

$$
\nabla^{2} \equiv\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \overbrace{\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)}
$$

- If we act operator "L" on $\mathrm{Y}(\mathrm{l}, \mathrm{m})$ ' s we get: $\mathrm{L}(\theta, \phi) \mathrm{Y}_{l^{m}}=-l(l+1) \mathrm{Y}_{l^{m}}$

We see that the operator acts on the function and generates the same function with a multiplicative constant. In such cases the functions are called to be the eigenfunctions of the operator. The property of $Y(1, m)$ ' s is that they are eigenfunctions of " L ".

Spherical Harmonics 2

- The simplest $Y(1, m)$ is $Y(0,0)$ and is just a constant: $Y(0,0)=1$.
- The general rule is:

If $l=n$ then

$$
\begin{aligned}
& m=-n,-n+1, \ldots, 0, \ldots, n-1, n \\
& n=0,1,2, \ldots
\end{aligned}
$$

- So : if $I=1$ then $m=-1,0,1$ and the
$\mathrm{Y}(\mathrm{l}, \mathrm{m})$'s are:

$$
\begin{aligned}
& Y_{0}^{0}=1 \\
& Y_{1}^{0}=\cos (\theta) \\
& Y_{1}^{ \pm 1}=\sin (\theta) e^{ \pm i \phi}
\end{aligned}
$$

- Let's see if $Y(1,0)$ is an eigenfunction of the operator " L "...
$L Y_{1}^{0}=($ some constant $) \times Y_{1}^{0} \quad ?$
$L=\frac{1}{r^{2}}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)$
- $\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}(\cos \theta)=0$
- $\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)(\cos \theta)=$
$\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}(\sin \theta \cdot-\sin \theta)=$

$$
\begin{equation*}
\frac{1}{\sin \theta}(-2 \sin \theta \cos \theta)=-2 \cos \theta \tag{2}
\end{equation*}
$$

- (1) \& (2) $=>L Y_{1}^{0}=-2 \times Y_{1}^{0}$
where $-l(l+1)=-1(1+1)=-2$

Solution of Schrödinger

 Equation- Back to the solution of Schrödinger equation. Consider the function:

$$
\Phi(r, \theta, \varphi)=g(r) Y_{l}^{m}(\theta, \varphi) \quad g(r) \equiv f(r) / r
$$

- Putting this answer into the Schrödinger equation, $E \Phi=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+U(\vec{r})\right) \Phi, ~(g e t: ~$

$$
E g Y_{l}^{\mu^{\prime}}=\left[-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right) g-\frac{\hbar^{2}}{2 m r^{2}} l(l+1) g+U g\right] Y_{l}^{m}
$$

Note: $\mathrm{L}(\theta, \phi) \mathrm{Y}^{m}=-l(l+1) \mathrm{Y}^{m}{ }^{m}$ has been used.

- Using $g(r)=f(r) / r$, we get the final result:

$$
E f(r)=\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+U(r)+\frac{l(l+1) \hbar^{2}}{2 m r^{2}}\right) f(r)
$$

$$
E f(r)=\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d r^{2}}+U(r)+\frac{l(l+1) \hbar^{2}}{2 m r^{2}}\right) f(r)
$$

- We can now talk about energy levels in H atom:
- Since the potential in

Hydrogen atom has the form of $1 / r$, the levels $2 s$ and $2 p$ are at the same energy. This does not have to be the case for other atoms.
Also note that for each value of "l", there are $21+1$ values of " m " that have the same energy. So when $\mathrm{l}=1, \mathrm{~m}=-1,0,1$ and the levels comes in triplets. When $\mathrm{I}=2$, there will be 5 degenerate levels.

- One thing to remember is that anytime the Potential is spherically symmetric, the solutions to Schrödinger equation can be written as:

$$
\Phi(\mathrm{r}, \theta, \varphi)=g(r) Y_{l^{m}}^{m}(\theta, \varphi)
$$

