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What we are trying to learn are the energy
levels of a given solid. The concept of
bandstructure is very useful in
understanding the energy levels of periodic
solids. Note that the atoms in solids we are
interested in are arranged periodically.
 The starting point is the Schrédinger

equation: 72
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» The direct war of solving this equation is
to set up a lattice of points and turn the
equation into a matrix equation. But this
direct approach gets intractable because
the matrices get huge for problems dealing
with more than 1 dimension.

Instead what is widely used is the method
of basis functions: one uses his/her
knowledge of the material to write the
function ® in terms of a set of basis
unctions.

» Example: suppose you are interested in the
lowest energy levels of a hydrogen molecule.
There, one knows the wavefunctions of 1s
levels of each H atom. When the two atoms
are brought close to each other the
wavefunctions mix up somewhat but the
overall wavefunction is composed of the two
individual wave functions: ¢ (r)= Z g.u_(r)

* Instead of looking for a function we only
need to find the proper coefficients which
in the case of H2 molecule there are only 2 of
them.




« After writing the total wavefunction as
some of a set of basis functions one can
turn the Schrodinger equation into a matrix

equation: | d(F)=X ¢ u,_(F)
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» The elements of H can be found by first
principles (ab initio) or by the semi empirical
method which is easier to deal with. In the
case of H2 molecule we want to find the
elements of a 2by2 matrix. From the
symmetry of the problem we can name the
elements as:
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be found by choosing them

in a way that the wave-
function calculated this way would fit the
experimental data.

» The advantage of this method is that it is a
lot faster.
» The next step is to find the eigenvalues of
our 2by2 matrix. Let A represent the
eigenvalues of the matrix. Then A=¢g+t
» And eigenvectors are:
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* A note about matrices, their eigenvalues
and eigenvectors:
* If a constant number is added to the diagonal elements, then all the eigenvalues are

modified by adding that constant value to them and the eigenvectors remain unchanged.

Alig}=21¢]
A+cel]ig)=[Alig}+clg)=(1+c)ig)




Let’'s now move on to bandstructure and
start with a simple example. Consider a
hypothetical solid consisted of an array of
hydrogen Ia_iomsl:_I H H —| H
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* Since the solid is periodic, all of the “t”s are
actually the same.

» Notice that in general the rest of the matrix
elements are not zero but because the
coupling between atoms gets weaker the
farther they are apart, in some cases people
only consider the nearest neighbors.

* One can include more terms to get higher
order answers. The important thing to note is
that the principles of bandstructure will work
regardless. For that to work each row in the
matrix should look the same as others
(although the elements might be shifted)

» What we’ll see in the next couple of lectures
is that if H would from a solid like the left
figure it would be a metal and conduct very
well. But in practice if Hydrogen atoms are
put in array together the configuration that
minimizes energy will be more like:

H-H— H-H—H-H

e This is what is called a dimerized solid. In
this configuration the solid will be a
semiconductor.




* We want to find the eigenvalues of the
Hamiltonian matrix:

» Now if the solid is periodic, then any row’s
equation will look like 1 and the following
solution will satisfy 1: ¢ = Bl d,
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» Because the solid is periodic and the
matrix looks like above, one can use the
principle of bandstructure to find the
answers analytically.

» The basic idea is that the matrix equation
above can be written as N algebraic
equations. For example the nth row gives
us the nth equation:

E¢n = 1:¢n—1 + g¢n + t¢n+1 (1)
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» To check the answer plug it in the equation:

a? |kna t%{ n— 1ka+gé\ |kna+ta€ n+1 ka

E
E=te™ +c+te" = ¢+ 2tcoska

This is called the E-k relationship and our
solution satisfies 1 if this relation is satisfied.




» We can plot the E-k relationship:

é E =c¢+2tcoska
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» But the above seems to suggest that E-k
relationship is a continuous function; hence
infinite amount of eigenvalues not N of them.
So how do we get N eigenvalues? The point
IS that there are only specific values of k that
are allowed. This is coming form the Periodic
Boundary Conditions (PBC):
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— | » Equation (1) clearly shows that k cannot
— | assume any values and since E is related to
= | k via E-k relation, energy eigenvalues can

ly assume particular values.
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