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Review
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• The principle of bandstructure helps us to 
find the eigenvalues of a periodic matrix. 
This is important for us because solids that 
we are interested in have periodic 
structures. Consider the example of last 
day:

• Regardless of the details of the problem, 
the matrix that we write will be periodic.

• Notice that as long as every row looks the 
same, the principle of bandstructure applies 
regardless of how each row looks. The nth 
row is:

• This solution satisfies the Schrödinger 
equation if the E-k relationship below is 
met.

• 2 in 1 

• As long as the above E-k relationship is 
met, the solution we chose will satisfy the 
Schrödinger equation.
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• What we’ll learn today is a generalization 
of bandstructure  method to a solid where 
the unit cell consists of two atoms.

• The above dimerized solid is 
semiconductor whereas for the old case 
shown below the solid is metallic. To know 
why consider:

• For the above solid the eigenvalues are 
given by:     1   1’ 2   2’ 3  3’ N  N’
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Array of H Atoms -
Metallic Conduction
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• How can we tell if a solid is metallic or 
not? Well, we’d have to investigate the 
energy levels around the Fermi level. If 
there are lots of levels around the Fermi 
energy, then the solid conducts well, 
otherwise it will conduct poorly.
• Where would the chemical potential be 
for this simple structure?

• By definition, the Fermi energy is where, 
above it all levels are empty and below it 
all levels are full (at absolute 0).

• Since there are lots of levels around 
Fermi level, in this case the solid will 
conduct well. 
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Dimerized Solid -
Semi-Conduction 

16:31

• In the case of dimerized solid, there are 
two atoms per unit cell. So N unit cells will 
consist of 2N Hydrogen atoms. 

• What we will see shortly is that the energy 
levels of a dimerized solid look like:

• In this case, the Fermi energy lies 
between the two bands of allowed energy 
levels. Since there are not levels around 
the Fermi energy, the solid will not conduct.
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Dimerized Solid -
Schrödinger Equation
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• Next we want to find the dispersion relation for the dimerized solid:

• We see that now every other row in the matrix is the same not every row. To use the 
principle of bandstructure every row must look the same. To get this configuration we can 
do this:

• What has happened is that by combining two 
elements of the wavevector into a new one we get:

• Similarly:
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Dimerized Solid:  
Dispersion Relation

27:08

• We can now use the principle of 
bandstructre to write the solution to the set 
of equations:

• The claim is that the following will satisfy 
the equations:

• Equation “n” reads:

• Putting (1) in (2)

• Canceling the same factors from the two 
sides:
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• There are 2N states available. There are 
total of  2N electrons. Each state can take 
two electrons. At temperature, the lower 
band is filled and the upper band is empty. 
Fermi levels lies between the two bands. 
Since there are no states around the Fermi 
level, the dimerized solid will not conduct 
well. 

• The fact is that if we had a linear array of H 
atoms, it would be arranged like a dimerized 
solid and it won’t conduct.
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Dimerized Solid:  
Eigenvalues

39:56

• Next we want to find the eigenvalues. First, let’s write matrix h(k):

• Eigenvalues are:
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