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Review
00:05

• The bandstructure principle helps us to 
understand the energy levels of large 
solids and serves as a background to 
understand the energy levels of 
nanostructures. For electrical conduction 
we need to understand the energy levels 
and we need to know where the Fermi 
level lies because the energy levels around 
the Fermi level determine the I-V 
characteristics.
• We always start from Schrödinger 
equation: 

• As long as there is spherical symmetry 
for the potential we can reduce this 
equation to three 1D equations. Solving 
each equation numerically then involves 
turning the equation to a matrix equation. 
To so we first set up a lattice of points. 

• By doing this we have discretized the  
quantities we are dealing with. For 
example the wavefunction will have a value 
at each lattice point.

• Notice that without the spherical 
symmetry the problem is not separable; 
hence we have to deal with the 3D 
equation which easily gets out of hand.
• To solve the problem we turn into another 
method, namely the idea of basis 
functions.
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Basis Functions
06:27

• A good example for use of basis functions 
is to use it for the Hydrogen molecule. The 
separate Hydrogen atoms are have these 
1s orbital. We can use these as our basis 
functions keeping in mind that the 
wavefunction of the Hydrogen molecule will 
be some linear combination of these two.

• Again Schrödinger equation becomes a 
matrix equation:

• With this background we get into the 
concept of bandstructure. Consider a 2D 
solid:

• The number of basis functions is b*N 
where b is the number of atoms and N is 
the number of orbitals per atom.
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Periodic Matrix
10:14

• We can now think of the matrix as an N 
by N matrix where each element is b by b. 
In doing so what we’ve gained is the 
periodicity of the matrix. Once the matrix is 
periodic we can use the principle of 
bandstructure and find the energy levels in 
a relatively easy manner. To see this start 
with the wavefunction: we can write the 
solution to the Schrödinger equation as:

• The principle of bandstructure helps us 
to find the eigenvalues of a periodic matrix 
in a simple way. This is important for us 
because solids that we are interested in 
have periodic structures so the 
Hamiltonian matrix looks periodic. For 
example:

This matrix equation is a set of algebraic 
equations each of which can be written as:
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Principle of Bandstructure
16:36

• Substituting 2 in 1, we have: 

• Where:

• What has happened is that finding the eigenvalues of h(k) has now become more tractable 
. Since for a particular k, h(k) is b*b we can easily find its eigenvalues. k runs from 1 to N 
based on the number of lattice points. So for each k we get b*b eigenvalues. Altogether we 
have Nb*Nb eigenvalues which is exactly what we were after.
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Example: 1D Solid
19:00

• Let’s apply what we’ve learned to a 
special case. Consider a 1D lattice with 1 
orbital per unit cell.

• The general expression for h(k) is:

• Fix a point “n” and write the summation:

• h(k) becomes: 

• We can now draw the dispersion relation:
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Example: 1D Dimerized 
Solid

25:53

• Let’s apply this to another example, namely the dimerized solid.

• Again the general h(k) can be written as:

• h(k) for the dimerized solid can be written as:
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Dispersion Relation for 1D 
Dimerized Solid

33:27

• Next we want to find the eigenvalues. 

• Eigenvalues are:
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Example: 2D Square Solid
35:01

• Take and set the origin 
as shown…

• Thus, after adding all of them we get: 
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Want to evaluate:

Evaluating Hnn results in ε (self-energy)
and evaluating Hnm results in a value that we
call t. So we have 5 terms in our summation:
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