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Dispersion Relation 
Quantized k States

01:35

• Given any periodic structure we’ve 
discussed how to calculate the E-k 
relationship. For example consider a 1D 
dimerized solid with two orbitals per unit 
cell

• The number of allowed values of k can 
be found as:

• Notice that the spacing between the k 
states comes from the imposition of 
periodic boundary conditions. To see this 
consider:
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Brillouin Zone
08:16

• To see why the k values are bounded 
between  –pi/a and pi/a consider the 
simple dispersion relation of 1D solid:

• The point is that if you take any value of k 
within the range and add 2pi/a to it, you will 
not get a new independent wavefunction.
• To see this consider the solution…

• You can clearly see that 1 and 2 are the 
same. This is why we do not need to 
consider any k values outside of the range  
–pi/a 2pi/a. The point is that 
corresponding to any point outside the 
range there is a point within the range 
which is an integer multiple of 2pi/a from it. 
It is the same story for all of them. Add this 
amount to k and you will get the same 
answer.
• This symmetric interval around k=0 states 
that gives us a complete set of k values is 
called the first Brillouin zone.
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Reciprocal Lattice in 2D
14:58

• Any point in the real                                          • Any point in the reciprocal lattice 
space can be written as:                                        can be written as:
Where the general solution 
is:                                                             • To find K the general procedure is to 

find the vectors A1 and A2 that satisfy:
To construct the reciprocal lattice we need 
to find a vector K such that:

• We can now check to see if we have 
right answer:
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E-k Diagram and 
Conduction

36:09

• We are studying this course to 
understand the electrical properties of 
semiconductors. Looking at this E-k 
diagram, you can see that the chemical 
potential lies in the gap between the 
bands. Ordinary there is no conduction. 
But if we move the levels relative to Ef
via applying a voltage we get 
conduction.
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FCC Lattice to BCC 
Reciprocal Lattice

40:04
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