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Topics

• MEMS Products
• History
• Issues of Scale
• Fabrication Processes
• Reliability & Problems to be solved
• New Applications –Approaches – Problems to be 

solved
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QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

MEMS are everywhere!
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Top MEMS Manufacturers in 2006

• http://www.memsinvestorjournal.com/2007/04/ranking_of_t 
op_.html#more
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• “There’s Plenty of Room at the Bottom”, 1959, 
California Institute of Technology
– 2 Challenges:

• Construct a working electric motor able to fit in a 
1/64 inch cube

• Print text at a scale that the Encyclopedia Britannica 
could fit on the head of a pin

Vision of Micro-Systems

Richard P. Feynman                                
(1918-1988)

William McLellan, 1960

T. Newman, 
R.F.W. Pease, 
1985



6

Red blood cells
(~7-8 m) 

Things NaturalThings Natural Things ManmadeThings Manmade

Fly ash
~ 10-20 m

Head of a pin
1-2 mm

Quantum corral of 48 iron atoms on copper surface
positioned one at a time with an STM tip

Corral diameter 14 nm

Human hair
~ 60-120 m wide

Ant
~ 5 mm

Dust mite

200 m

ATP synthase

~10 nm diameter
Nanotube electrode

Carbon nanotube
~1.3 nm diameter
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The Challenge

Fabricate and combine 
nanoscale building 
blocks to make useful 
devices, e.g., a 
photosynthetic reaction 
center with integral 
semiconductor storage.
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1,000,000 nanometers = 

Zone plate x-ray “lens” 
Outer ring spacing ~35 nm

Office of Basic Energy Sciences
Office of Science, U.S. DOE
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The Scale of Things The Scale of Things –– Nanometers and MoreNanometers and More

MicroElectroMechanical 
(MEMS) devices
10 -100 m wide

Red blood cells
Pollen grain

Carbon 
buckyball

~1 nm 
diameter

Self-assembled,
Nature-inspired structure 
Many 10s of nm

Atoms of silicon
spacing 0.078 nm

DNA
~2-1/2 nm diameter
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Effect of Reduction in Scale

Why does a change is scale matter?
• Entering different physics regimes at a 

particular scale.
• Physical phenomena scale at different rates 

which changes their relative importance.
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Use a Scaling Parameter to evaluate Scale effects
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Geometric Scaling

GEOMETRY SCALING 

Xs = S Xo      

As = XsYs = S2 XoYo = S2 Ao

Vs = XsYsZs = S3 XoYoZo = S3 Vo 

AREA – VOLUME  RATIO SCALING 

As/Vs = 1/S  (Ao/Vo) 

Things that depend on 
Volume are going to 
decrease dramatically

Things that depend on 
this ratio will increase 
in importance
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Mechanical Scaling
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Mass: cubically reduced

Stiffness: Linearly reduced

Natural Frequency: increases
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Thermal Scaling

Thermal Mass: proportional to volume

TVcTmc pp  

Thermal Conductivity: Proportional to Area
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Thermal Diffusivity (time constant): Proportional to Vol/Area
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Fluidic Scaling

SVD



Re

Reynolds Number: A measure of the transition between 
laminar and turbulent flow

Laminar flow: Re<2000 

Turbulent Flow: Re>4000 

Micro Domain is dominated by laminar flow.

DV
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Scaling of Electrical and Magnetic Fields
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Energy Density:
Ebreakdown =3MV/M  

 
Uelectric =40 J/M3

Bsat =1T  Umag =4x105 J/M3

Magnetic actuation dominates in the Macro world due to 
the calculations above.

But Magnetics does not dominate in the Micro world. 
Why?
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Paschen’s Law
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F. Paschen, Wied. Ann., 37, 69, 1889
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Scaling of Electrical and Magnetic Fields

Ebreakdown = 3x108 V/M  for small gap of ~ 1 m or less


 

Uelectric = 4x105 J/M3

which is now comparable to magnetics

However, 

* Magnetics has fabrication issues at the microscale

•For magnetic field constant  B=Bsat

•Electric Field increases with decreasing gap (            ) up 
to the breakdown voltage.

S
E 1

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Physical Phenomena Change 
The breakdown of the continuum 

• Paschen Effect
• M.F.P 0.1 M of air at STP
• Material crystal sizes in polycrystalline material 

~0.1 M 
• Magnetic Domains ~10-25 micron
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A Continuum of Microsystems Fabrication Technologies

• Materials:  Most metals, alloys, 
and superalloys & most 
polymers and ceramics

• Processing:  One piece at a time
• Assembly:  Hand assembly
• Geometry:  Full three- 

dimensionality

• Materials:  Polysilicon and limited metal coatings
• Processing:  Parts produced at wafer level
• Assembly:  Pre-assembled through standard 

processing
• Geometry:  Two-dimensional, multi-level
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10-6
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10-4

10-3

10-2

10-2
Precision 
Machining

LIGA/Bulk

SMM

• Materials:  Limited metals, ceramics, and 
polymers 

• Processing:  Parts produced at wafer level
• Assembly:  Precision assembly or non- 

standard processing for multi-levels 
• Geometry:  Deep two-dimensionality or 

multi-level 

• Materials:  Limited metals, ceramics, and 
polymers

• Processing:  Parts produced at wafer level
• Assembly:  Precision assembly or non- 

standard processing for multi-levels
• Geometry:  Deep two-dimensionality or 

multi-level
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Surface Surface 
MicromachiningMicromachining

Silicon Substrate

Poly Si

Three Dominant MEMS Fabrication 
Technologies

structures formed 
by deposition and 
etching of sacrificial 
and structural thin films.

[100]

Bulk Bulk 
MicromachiningMicromachining LIGALIGA

Wet Etch Patterns

Dry Etch Patterns Mold

Silicon
Substrate

3D structures formed 
by wet and/or dry 
etching of silicon 
substrate.

3D structures formed 
by mold fabrication,
followed by injection 
molding/electroplating 
.Groove Nozzle

p++ (B)

Membrane

[111]

Silicon
Substrate

Channels Holes

54.7o
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Manufacturing Effect of Reduction in Scale

• Size        Relative Manufacturing Precision 

– Dimensional Tolerance/Nominal Dimension

• Micro Scale (1-100m)          0.1% - 1%

• Macro Scale (1cm – 1m)       0.001%




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Manufacturing Processes Impose 
constraints on Design

• Bulk Micromaching Example:
– Aspect ratio of etches

• Surface Micromachining Example
– Stringers

5 µm

Etch

Polysilicon

Silicon Dioxide 

Stringer



21

A Variety of Micro Mechanisms are required  
for Microdevice Applications 

Dr. Kota, U of Michigan, S. Rogers, Sandia National Laboratories

Comtois, 1996

J. Allen, Sandia National Laboratories

J. Allen, Sandia National Laboratories
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CAD Tools are Essential to the Design of Microsytems

LayoutInitial Design 

Visualization 

Final Product

3D Modeler
2D Process Visualizer

Design 
Validation

Design Rule checking
Analysis

Verification

Mesh

Fabrication Time & 
Expense demand the 
availability of these tools
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Class II
• Moving Parts
e.g., Accelerometers

Class III
• Moving Parts
• Impacting Surfaces
e.g., Tilting Mirrors

Class IV
• Moving Parts
• Impacting Surfaces
• Rubbing Surfaces
e.g., Gears

Reliability Concerns Increase With 
Complexity

Class I
• No Moving Parts
e.g., Pressure Sensors

Anodic oxidation of electrostatic comb drives Wear debris generated under accelerated conditions

Understand the science of reliability
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Reliability Testing
SHiMMeR: Sandia High-volume Micromachine Measurement of Reliability
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MEM Performance Measurement Issues
• These are small devices (microns)
• Structures may move very fast (>1 kHz, >100000 rpm)
• Small displacements can occur (angstroms - microns)
• Displacements can be in plane or out of plane
• High voltages may be required (many 10s of volts)
• Complex control signals may be necessary
• Direct electrical measurements are not typical
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MEMS Electrical Contacts

• Contact Resistance is a function of 
Contact Force
– An issue at Microscale

• Materials issues
– Contact Stiction
– Contact Resistance change with 

age and repeated actuation

Applications
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Optical Bench Example 

Dr. Wu, U. of California, Berkley

Applications
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electrodes

flexible
interconnect

tack

antenna

inner-eye
electronics microelectronics

electroplated tips

bulk micromachined
electrodes

surface 
micromachined
springs

(polymer) 
frame

flexible frame for 
attachment 

micromachined 
electrode array 
(silicon substrate)

retina

posts for 
assembly &
electrical 
interconnect

• Electrical stimulation of retinal neurons after light sensitive cells 
(photoreceptors) are lost. 

• Micromachined conformal electrode array provides positive 
controlled contact with tissue (retina), accommodating overall and 
local curvature. 

• Integrated electronics essential for high electrode count system 
(on-chip mux/demux for 100+).

• Mechanical test modules in animal tests.

Retinal Implant

Applications
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Neural Probes

Applications
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2592 SUMMiT V™ die 
with Buried Interconnects

4”x4” Johns Hopkins/APL 
Experimental Thermal 

Regulator

3 NASA/Goodard 
ST5 Microsats 

Launched 3/22/06

Experimental satellites 
monitor space weather

MEMS Variable Emittance Louvers

Applications
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IBM Millipede Storage System

• High density data storage possible(Tb/in2)
• 4x Magnetic Media
• AFM tip writes and reads data
• Bit set by melting depression into 

polymer medium

Applications
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SiTime Resonators

Applications
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PRISM Center can greatly Impact 
Microsystem Development

• Improve understanding MEMS reliability 
• Provide the capability for analysis based design 

versus empirical or design of experiments 
approach

• Provide the ability to include uncertainty of 
fabrication process and materials in MEMS 
designs

• Increased understanding of the physics of 
phenomena.
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