Experiment vs. modelling: what's the problem?

Bill Barnes**Universit y , of Exeter , UK**

Much of the material discussed here will soon be published as an article by the *Journal of Optics A: Pure and Applied Optics*.

The good

The good The bad

The good The bad The ugly

outline

The good: experiments (they are real!)

The good: experiments (they are real!) The bad: models (never match data)

The good: experiments (they are real!) The bad: models (never match data) The ugly: theory (incomprehensible)

outline

The good: theory (its pure!)

The good: theory (its pure!) The bad: experiment (never matches)

The good: theory (its pure!)

The bad: experiment (never matches)

The ugly: fabrication details..

experiment *vs*. theory

Dürr et al. Science **322** 1224 (Nov 21st 2008)

Science is a mixture of experiment and theory – that's the real beauty

plasmon modes – confinement and control of light in (deep) sub-wavelength regime

Scattering of light by a metallic disc. "I'll even get rid of the substrate!"

Chris Burrows

gold disc made by electron-beam lithography immersed in index matching oil 120 nm dia, 30 nm thick

Burrows and Barnesunpublished

mesh scale \sim 3 nm

Chris Burrows

gold disc made by electron-beam lithography immersed in index matching oil

exact shape? grains? surface contamination?..

….illumination and collection?

Experiment 1.0 o FEM (model) ensity e 0.8 Scattered Int 0.6 0.4 $_{0.2}$ $\begin{array}{c|ccc}\n0.2 & & & \\
\hline\n0.0 & \text{nonnonnonnon} & \text{600} & \text{700} & \text{80} \\
400 & 500 & 600 & 700 & 80\n\end{array}$ \overline{O} 0.0120 nm dia, 30 nm thick $\frac{30}{120}$ nm dia, 30 nm thick $\frac{400}{120}$ and $\frac{500}{1000}$ $\frac{600}{1000}$ $\frac{700}{1000}$ mesh used

Scattering of light by a metallic disc. "I'll even get rid of the substrate!"

Burrows and Barnesunpublished

Chris Burrows

gold disc made by electron-beam lithography immersed in index matching oil

exact shape? grains? surface contamination?..

….illumination and collection..

Burrows and Barnesunpublished

First shot at using different approaches

Scattering of light by a metallic sphere in vacuum: comparison of techniques

James Parsons

meshing needed at 1 nm level (<< wavelength)

First shot at using different approaches

Scattering of light by a metallic sphere in vacuum: comparison of techniques

James Parsons

meshing needed at 1 nm level (<< wavelength)

purpose of model

build understanding, explore physics…. design tools

what do we require?

modes, field profiles, field enhancement, LDOS, cross-sections, polarization behaviour…

so what's the problem?

informal survey – (1) relative permittivity, $ε(ω)$, (2) meshing.

purpose of model

build understanding, explore physics…. design tools

what do we require?

modes, field profiles, field enhancement, LDOS, cross-sections, polarization behaviour…

so what's the problem?

informal survey – (1) relative permittivity, $ε(ω)$, (2) meshing.

experimental problems

not well enough controlled/specified, contamination, morphology, illumination, internal structure…

models

assumptions/and approximations too restrictive, perfectly periodic structures, bulk $\varepsilon(\omega)$

computational approaches

- Mie theory
- Finite difference time domain (FDTD)
- Finite element method (FEM)
- Green's dyadic method
- Boundary element method (BEM)
- Dipole-dipole approximation (DDA)
- Multiple multi-poles (MMP)
- Rigorous coupled wave/Fourier modal method
- Coordinate transformation (Chandezon)
- Effective media
- ….I wish I could remember!!………….

how well do they cope with,

- anisotropy?
- nonlinearity?
- transient behaviour?
- random structures?

 \sim . 2

experimental details

fabrication !!!

electron-beam lithography vs. nanosphere lithography

scale bar 300 nm

scale bar 200 nm

experimental details

fabrication !!!

electron-beam lithography vs. nanosphere lithography

scale bar 300 nm


```
 scale bar 200 nm
```


dark-field

determine crosssection…

gold film parameters from fit of Fresnel's equations to data permittivity, ε = -10.73 (\pm 0.02) + 1.279i (\pm 0.005), d = 47.2 nm \pm 0.1

gold film parameters from fit of Fresnel's equations to data permittivity, ε = -10.73 (\pm 0.02) + 1.279i (\pm 0.005), d = 47.2 nm \pm 0.1

but

Johnson and Christie (PRB **6** 4370 (1972)) ε ⁼ -12.3 ⁺ ~1.2i

and

Lynch and Huttner, "Handbook of Optical Constants of Solids", (1985), ed. Palik ^ε⁼ -10.4 ⁺ 1.4i 0

whilst

Innes and Sambles (J Phys F: Met **17** 277 (1987)) ^ε⁼ -11.8 ⁺ 1.36i

residuals show up a problem surface roughness? grain boundaries?

…in fact there is an SPP supported by both metal surfaces…

Corrugated film used so as to allow grating coupling to prism-silver SPP

Nash and Sambles (J Mod Opt **46** 1793 (1999))

…in fact there is an SPP supported by both metal surfaces…

Corrugated film used so as to allow grating coupling to prism-silver SPP

nm

elength 633

wave

even a simple planar film can not be described by just one $ε(ω)$,

SPP waveguides and roughness

Ebbesen, Genet and Bozhevolnyi

Charbonneau et al. Opt Exp **13** 977 2008

Nielsen et al. Opt Lett **33** 2800 2008

Nielsen et al. Opt Lett **33** 2800 2008

strip waveguides – coupled SPP mode (LRSPP) loss should fall as thickness of metal reduced but…

roughness and grain boundaries influence attenuation - not well understood

looking at Raman signal from double disc

optimum disc-disc spacing 10 nm from DDA calculations but 30 nm from experiment

including roughness – hot spots

optimum separation is now 32 nm from calculations

IEI 2 for gold dimer – 32 nm separation

hot spots may dominate system behaviour!

looking at Raman signal from double disc

optimum disc-disc spacing 10 nm from DDA calculations but 30 nm from experiment

and Schatz (MRS Proceedings 2008)

including roughness – hot spots

optimum separation is now 32 nm from calculations

but extinction spectrum!...

hot spots may dominate system behaviour!

contamination: basis of SPR sensing

Localised **S**urface **P**lasmon Resonance (LSPR) of gold and copper nano-triangles

Gold

 \bullet sensing presence of bound target molecules

• able to detect just a few hundred molecules

McFarland and van Duyne, Nano Lett. , **3**, 1057 (2003)

contamination: basis of SPR sensing

break down of bulk description

- •roughness
- •grain boundaries
- •surface scattering
- •non-local effects ..interface as a selvedge (J. Sipe, Phys Rev B **²²**, 1589 (1980))
- •down to what length scale can we ignore atomic nature of material?

Garciá de Abajo J Phys Chem C **112** 17983 2008

 \bullet do we need to combine atomic (QM) description and bulk (EM) description?

Zhao et al. J Am Chem Soc **128 2911** 2006

density-functional theory used to calculate Raman intensities for pyridine-Ag $_{\rm 20}$ cluster

- Optical regime mesh is needed down to 1 nm scale
- Big mismatch between this mesh size and wavelength (>10²)
- Fields at surface not well represented by staircase surface

….models might be flawed – but do we have experimental control at this level?

we don't have to go to the optical - problems exist at microwave frequencies!

Celia Butler

A metal-dielectric stack – the metal being a grid (hole array)

(Butler et al submitted to PRL May 2009) al.,

the air-filled hole array metamaterial, blue represents copper $t_{\rm m}$ = 18µm*,* λ _g = 5mm, $w_m = 0.2$ mm.

the metamaterial/dielectric stack, where red regions represent the dielectric $t_{\rm d}$ = 6.35mm

- frequency range of interest is 5 GHz 40 GHz
- •equivalent wavelength range is 7.5 mm – 6 cm

FP resonances

- •10% mismatch in frequency
- \bullet looks as though thickness and/or permittivity of spacer is wrong

measure permittivity independently $\varepsilon = 2.55 + 0.0i \longrightarrow \varepsilon = 3.00 + 0.004i$

cos distribution – little field in metal

sinh distribution – considerable field in metal *cos*

cos distribution – little field in metal

Skin depth in Copper at \sim GHz is 1 micron, 10⁻⁴ \times wavelength

where does this leave us?

- **experimental**: situation far from being well defined or under control
- mixture of **analytic and computational** approaches is essential lots of good theory and models already available but…..
- **provided bulk description of matter valid**, equations are well known and problems are computational intensity and boundary conditions (morphology (morphology etc. – hard to specify problem well enough (random structures?)
- **validation** quantitative agreement still difficult e.g. cross sections, range of validity

New Physics?

- **non-linearity** (esp. of metal) CARS, TPL…
- Atomic scale/**quantum effects** (break down of bulk description)
- inclusion of **gain media**

Questions & Answers

Scattering of light by a metallic sphere in vacuum: comparison of techniques

James Parsons

meshing needed at 1 nm level (<< wavelength)

…in fact there is an SPP supported by both metal surfaces…

Corrugated film used so as to allow grating coupling to prism-silver SPP

even a simple planar film can not be described by just one $ε(ω)$,

nm elength 633 wave