

# Network for Computational Nanotechnology (NCN)

UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP



Abhijeet Paul, Gerhard Klimeck & Ben Haley NCN @Purdue University West Lafayette, IN 47906, USA





### **Topics discussed**

- What are crystals?» How are they represented?
- Basics of crystallography:
  - » Lattice vectors, primitive cells, unit cell
  - » Bravais lattices, Miller indices and planes
- What is Crystal Viewer tool?
   » Features.
- Capabilities in the tool.
- Types of Inputs.

- What happens when you just hit SIMULATE?
- Example run for a complete simulation.
- Limitations of the tool.
- Few Words About the tool.
- References.
- Appendix





#### What are crystals?

- Crystals are
  - » Periodic arrangement of atoms in space (called Lattice).
- Simplest periodic block can be a single atom
  - » Eg: Copper, Gold, Silver, Iron, etc.





Images obtained from Crystal Viewer tool on nanoHUB.org





# Representation of Crystals

- Crystal is represented by
  - » Lattice : Points in space repeated periodically
  - » Basis: Group of atoms repeated each lattice point.







# Steps to construct a crystal

- Basis & Lattice together form the crystal.
- A basis can have one or more than one atom
  - » In the last slide basis had 2 atoms.
- Translate the basis in the space (at lattice points) to obtain the crystal structure.
  - »  $T = La_1 + Ma_2 + Na_3$  T = Translational vector. L,M,N => integers
- a<sub>1</sub>, a<sub>2</sub> & a<sub>3</sub> are called Lattice vectors.
- Lattice Vectors are not necessarily unique.



Three different lattice vectors produce the same lattice structure.







# Crystallography: About the Basis...

- Basis: Can be as simple as one atom, or a complex many atom system.
- Basis is also called a unit cell or simply a cell.
- Unit cell with minimum volume is a Primitive cell.

• In complex cells atoms are linked together using vectors called **bond vectors**.

1 atom basis











#### Miller Planes and Indices

- Miller indices are method to describe :
  - » planes and directions in crystals.
- Indices are denoted using I, m, n along x,y,z respectively.
  - » These are inverse of intercepts on the x,y,z axis.
  - » Convert these into full integers.
  - » Eg: intercept (3,2,6) => 1,m,n = 6X(1/3,1/2,1/6) = (2,3,1).
- (lmn) represents a miller plane along direction l,m,n.
- [lmn], denotes a direction in the basis of direct lattice.
- <lmn> denotes direction that are eqv. to [lmn].
- {lmn} denotes the family of planes eqv. to (lmn).
- Negative integers are represented by with a bar on the number.



Images obtained from Crystal Viewer tool on nanoHUB.org







#### What is Crystal Viewer Tool?

- Crystal Viewer Tool :
  - »A MATLAB® based.
  - »Used for visualization of :
    - ✓ Different material crystals.
    - ✓ Different Bravais Lattices.
  - »Provides information about miller indices and planes.
  - »Provides information about crystals.
  - »Tool has been developed at Purdue University.
    - Part of the teaching tools on nanoHUB.org.
- Developers: (version 1.23)
  - »Abhijeet Paul / Purdue University.
  - »Gerhard Klimeck / Purdue University.







## Crystal Viewer Tool: First look



#### Capabilities of the tool:

- ✓ Visualize Bravais lattices.
- ✓ Visualize larger grids.
- ✓ Visualize miller planes.
- ✓ Visualize material crystals.
- ✓ Visualize atomic planes.
- Obtain crystal information.

Check out the tool webpage for latest updates, features and bug fixes at: http://nanohub.org/resources/ crystal\_viewer









# Types of Inputs





## What happens when you just hit SIMULATE?

# Default Inputs Select unitcell system: Material Crystal System Material Crystal Systems Select Crystal System: Silicon Select atomic plane: [100]



Runs with the following default inputs:

[Select unitcell system]: Material Crystal System.

[Select Crystal Material]: Silicon

[Select atomic plane]: [100]











# Bravais lattice simulation: Input to Output



#### **OUTPUTS**











#### Limitations of the tool

- Visualization of miller planes is not very good
  - »normal vector and plane are not very helpful.
    - ✓ work is underway to improve this.
- Cannot take cut planes in the larger crystal systems.
- Improvement in atomic plane visualization needed.

Always keep checking the tool web-page for latest features, releases and bug-fixes at: http://nanohub.org/tools/crystal\_viewer







#### Few words regarding the tool

- Use this tool to learn about crystals.
- Feel free to post about
  - »the bugs
  - »new features you want.
- Contact the developers in case you want to collaborate for some work using this tool.

Always keep checking the tool web-page for latest features, releases and bug-fixes at: http://nanohub.org/tools/crystal\_viewer









- URLs on crystal information, miller index & Bravais lattice
  - »http://cst-www.nrl.navy.mil/lattice/
  - »http://en.wikipedia.org/wiki/Bravais\_lattice
  - »http://serc.carleton.edu/research\_education/crystallography/xld atabases.html
  - »<u>http://webmineral.com/</u>
  - »http://en.wikipedia.org/wiki/Miller\_index
- Books to read about crystals
  - » Kittel, Charles (1996) [1953].Introduction to Solid State Physics (Seventh Edition ed.). New York: John Wiley & Sons. pp. 10. ISBN 0-471-11181-3. http://www.wiley.com/









- Homework assignment using the tool.
  - » <a href="https://nanohub.org/resources/4200">https://nanohub.org/resources/4200</a>
- Link for the tool :
  - » <a href="http://nanohub.org/resources/crystal\_viewer">http://nanohub.org/resources/crystal\_viewer</a>





# Appendix A: Bravais lattices

| Distance<br>Parameters<br>(a, b, c) | Angle Parameters<br>(α,β,γ)                                                           | Name                       | No. of Lattices<br>/ Types | Example                                                                    |
|-------------------------------------|---------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------------------------------------------------------|
| a = b = c                           | $\alpha = \beta = \gamma = 90^{\circ}$                                                | Cubic                      | <b>3</b><br>S,B,F          | CsCl, NaCl                                                                 |
| a = b ≠ c                           | $\alpha = \beta = \gamma = 90^{\circ}$                                                | Tetragonal                 | <b>2</b><br>S,B            | TiO <sub>2</sub> (Rutile), SnO <sub>2</sub> (Cassiterite)                  |
| a ≠ b ≠ c                           | $\alpha = \beta = \gamma = 90^{\circ}$                                                | Orthorhombic               | 4<br>S,B,E,F               | KNO <sub>3</sub> ,<br>BaSO <sub>4</sub> (Baryte)                           |
| a = b = c                           | $\alpha = \beta = \gamma < 120^{\circ}$ $\neq 90^{\circ}$                             | Rhombohedral<br>(Trigonal) | 1<br>S                     | Ice, Al <sub>2</sub> O <sub>3</sub>                                        |
| a = b ≠ c                           | $\alpha = \beta = 90^{\circ};$<br>$\gamma = 120^{\circ}$                              | Hexagonal                  | 1<br>S                     | Mg, Zn, Pbl <sub>2</sub>                                                   |
| a ≠ b ≠ c                           | $\begin{array}{c} \alpha = \gamma = 90^{\circ}; \\ \beta \neq 90^{\circ} \end{array}$ | Monoclinic                 | 2<br>S,E                   | Monoclinic Sulphur,<br>Na <sub>2</sub> SO <sub>4</sub> .10H <sub>2</sub> O |
| a ≠ b ≠ c                           | $\alpha \neq \beta \neq \gamma \neq 90^{0}$                                           | Triclinic                  | 1<br>S                     | CuSO <sub>4</sub> .5H <sub>2</sub> O                                       |

S: simple B: body centered F: face centered E: end face centered





# Appendix B: Miller Planes & Directions



Some Important Miller planes

Images from <a href="http://en.wikipedia.org/wiki/Miller\_index">http://en.wikipedia.org/wiki/Miller\_index</a> Author: Christophe Dang Ngoc Chan



