ECE 659 Quantum Transport: Atom to Transistor

Lecture 28: Spin Orbit Interaction II

Supriyo Datta
Spring 2009

Schrodinger Equation:

1×1 differential equation

$$
\begin{aligned}
& \left(i \hbar \frac{\partial}{\partial t}+q V\right) \psi=\frac{(\vec{p}+q \vec{A}) \cdot(\vec{p}+q \vec{A})}{2 m} \psi \\
& \vec{p}=-i \hbar \nabla \\
& \vec{B}=\nabla \times \vec{A} \\
& \vec{E}=-\nabla V-\frac{\partial \vec{A}}{\partial t}
\end{aligned}
$$

Dirac Equation:
4×4 differential equation

$$
\left(i \hbar \frac{\partial}{\partial t}+q V\right)\left\{\begin{array}{c}
\psi \\
\phi
\end{array}\right\}=\left[\begin{array}{cc}
m c^{2} I & c \vec{\sigma} \cdot(\vec{p}+q \vec{A}) \\
c \vec{\sigma} \cdot(\vec{p}+q \vec{A}) & -m c^{2} I
\end{array}\right]\left\{\begin{array}{c}
\psi \\
\phi
\end{array}\right\}
$$

ψ, ϕ, σ, p are all 2×2 matrix, 1 is a 2×2 identity matrix

$$
\vec{\sigma} \cdot \vec{p}=\left[\begin{array}{cc}
p_{z} & p_{x}-i p_{y} \\
p_{x}+i p_{y} & -p_{z}
\end{array}\right]
$$

If V and A are 0 , the solution is a plane wave: $e^{i k x} e^{-i E t / \hbar}$

E-k relation for Dirac Equation:

Pauli Equation:
2×2 differential equation

$$
\begin{gathered}
\left(i \hbar \frac{\partial}{\partial t}+q V\right) \psi=\frac{[\vec{\sigma} \cdot(\vec{p}+q \vec{A})]^{2}}{2 m} \psi \\
\frac{c \vec{\sigma} \cdot(\vec{p}+q \vec{A}) c \vec{\sigma} \cdot(\vec{p}+q \vec{A})}{E+m c^{2}} \\
\xrightarrow{E \sim m c^{2}} \frac{[\vec{\sigma} \cdot(\vec{p}+q \vec{A})]^{2}}{2 m}
\end{gathered}
$$

With a higher order approximation we get another term which is a relativistic correction term and is the spin-orbit coupling
$\left(i \hbar \frac{\partial}{\partial t}+q V\right) \psi=\frac{[\vec{\sigma} \cdot(\vec{p}+q \vec{A})]^{2}}{2 m} \psi=(\frac{(\vec{p}+q \vec{A})^{2}}{2 m} I+\underbrace{2 m}_{\frac{q \hbar}{\mu_{B}} \vec{\sigma} \cdot \vec{B}}) \psi$
Now let: $\quad \vec{A}=\nabla \chi(\vec{r}, t) \quad \rightarrow \vec{B}=0$

$$
V=-\frac{\partial \chi(\vec{r}, t)}{\partial t} \rightarrow \vec{E}=0
$$

The Pauli equation has the above form due the requirement that if we put a V and A corresponding to the above special form of non zero potential the only change to the solution to Dirac Equation is:

This ensures that in case of 0 fields due to the special form of the potential the solution does not contain any unexpected results

Pauli Equation with relativistic correction:

$$
\begin{aligned}
& \left(i \hbar \frac{\partial}{\partial t}+q V\right)\left\{\begin{array}{l}
\psi \\
\vec{\psi}
\end{array}\right\}=\left(\frac{(\vec{p}+q \vec{A})^{2}}{2 m} I+\mu_{B} \vec{\sigma} \cdot \vec{B}+\mu_{B} \frac{\vec{\sigma} \cdot(\vec{E} \times \vec{p})}{2 m c^{2}}\right)\left\{\begin{array}{l}
\psi \\
\vec{\psi}
\end{array}\right\} \\
& \vec{\sigma} \cdot(\vec{E} \times \vec{p})=\left[\begin{array}{cc}
E_{x} p_{y}-E_{y} p_{x} & E_{y} p_{z}-E_{z} p_{y} \\
E_{y} p_{z}-E_{z} p_{y} & \left.E_{z} p_{y}-E_{y} p_{z}\right) \\
-i\left(E_{z} p_{y}-E_{y} p_{z}\right) & E_{y} p_{x}-E_{x} p_{y}
\end{array}\right]
\end{aligned}
$$

$$
E\left\{\begin{array}{l}
\psi \\
\bar{\psi}
\end{array}\right\}=(\frac{(\vec{p}+q \vec{A})^{2}}{2 m^{*}} I+\frac{g^{\downarrow}}{2} \underbrace{\frac{q \hbar}{2 m}}_{\text {Free electron mass }} \vec{\sigma} \cdot \vec{B}+\frac{\eta^{*}}{\hbar} \vec{\sigma} \cdot(\vec{z} \times \vec{p}) \underbrace{2 \text { in vacuum }}_{\text {Only for 2D structures }}
$$

