ECE 659 Spring'09

Weeks 1-3: Semiclassical Transport

HW#1, Due Friday January 23, 2009 in class

Fermi function: $f(E) = 1/(1 + \exp((E - \mu)/kT))$

Current $I = \frac{q}{h} \int dE \, \pi \gamma D(E) (f_1(E) - f_2(E))$

Ballistic and diffusive transport: $\gamma = \hbar v_x / L$, $\pi \gamma D \equiv M(E)$

 $I = \frac{q}{h} \int dE M(E) (f^{+}(E) - f^{-}(E))$

Electron density $n(x,E) = \frac{D(x,E)}{2} (f^+(x,E) + f^-(x,E))$

 $\frac{df^{+}}{dx} = \frac{df^{-}}{dx} = -\frac{f^{+} - f^{-}}{\lambda} , \qquad \lambda \equiv 2 v_{x} \tau$

 $f^{+}(x,E) - f^{-}(x,E) = \frac{\lambda}{\lambda + L} (f_{1}(E) - f_{2}(E))$

Problem 1: Show that for diffusive transport the conductance can be written as (A: cross-sectional area)

$$G = \frac{\sigma A}{L + \lambda}$$
, where $\sigma = q^2 \int_{-\infty}^{+\infty} dE \left(-\frac{\partial f}{\partial E} \right) \frac{D(E)}{AL} v_x^2(E) \tau$

Noting that the electron density is given by $n = \int_{-\infty}^{+\infty} f(E) \frac{D(E)}{AL}$

show that $\mu_n(mobility) = \frac{\sigma}{qn} = \frac{q \int_{-\infty}^{+\infty} dE \ f(E) \frac{d}{dE} \left(D(E) v_x^2(E) \tau \right)}{\int_{-\infty}^{+\infty} dE \ f(E) D(E)}$ (1)

assuming that the density of states D(E) is zero as $E \rightarrow -\infty$.

Problem 2: Typically semiconductors a parabolic E(k) relation, $E = \hbar^2 k^2 / 2m$, the density of states can be written in the form $D(E) = D_0 E^{(d/2)-1}$ where d is the number of dimensions and D_0 is a constant. Also, $v_x^2(E) = v^2(E)/d = 2E/md$. Using these relations in Eq.(1) and assuming τ to be independent of energy, show that $\mu_n = q\tau/m$.

Problem 3: A two-dimensional graphene sheet has a linear E(k) relation, $E = \hbar v_f |k|$, where v_f is a constant. The density of states can be written in the form $D(E) = D_0 E$ where $D_0 = \frac{WL}{2\pi(\hbar v_f)^2}$. Also, $v_x^2(E) = v_f^2/2$. Using these relations in Eq.(1) and assuming τ to be independent of energy, show that $\mu_n = q\tau/m$, if we define the "mass" as

$$m = \frac{2 < E >}{V_f^2}$$
 where $\langle E \rangle \equiv \frac{\int dE \ E \ f(E)}{\int dE \ f(E)}$

(ignoring the states below E=0)

Finally, please look over Prob.1 of HW#6 and Prob.1 of HW#7 from ECE 495N. Both homeworks and solutions are posted at

http://sites.google.com/site/ece495n/

You do not need to submit these, but reviewing them should be helpful in the coming discussions.