ECE 659 Spring '09 Weeks 9-11: Spin Transport

 HW\#6: Due Wednesday April 8, 2009 in classNEGF equations for elastic transport ($\mathrm{D}=0$ yields coherent transport)

$$
\begin{aligned}
& \Gamma_{1}=i\left[\Sigma_{1}-\Sigma_{1}^{+}\right], \Gamma_{2}=i\left[\Sigma_{2}-\Sigma_{2}^{+}\right] \\
& \Gamma_{S}=i\left[\Sigma_{s}-\Sigma_{s}^{+}\right]
\end{aligned}
$$

1. $G(E)=\left[E I-H-\Sigma_{1}-\Sigma_{2}-\Sigma_{s}\right]^{-1}$,
where $\left[\Sigma_{s}\right]=D[G]$
2. $A(E)=I\left[G-G^{+}\right]$
3. $\left[G^{n}(E)\right]=\left[G \Gamma_{1} G^{+}\right] f_{1}+\left[G \Gamma_{2} G^{+}\right] f_{2}+\left[G \Sigma_{s}^{i n} G^{+}\right]$
where $\left[\Sigma^{i n}{ }_{s}\right]=D\left[G^{n}\right]$
4. $i \hbar I_{o p}=\left[H G^{n}-G^{n} H\right]+\left[\Sigma G^{n}-G^{n} \Sigma^{+}\right]+\left[\Sigma^{i n} G^{+}-G \Sigma^{i n}\right]$

4a. $I_{a \rightarrow b}(E)=\frac{q}{h} i\left[H_{a b} G_{b a}^{n}-G_{a b}^{n} H_{b a}\right] \quad$ a, b: Internal Points
4b. $I_{i}(E)=\frac{q}{h}\left(\operatorname{Trace}\left[\Sigma_{i}^{\text {in }} A-\Gamma_{i} G^{n}\right]\right) \quad$ Currentenergy at terminal ' i^{\prime}
4c. $I_{i}(E)=\frac{q}{h} \sum_{j} \operatorname{Trace}\left[\Gamma_{i} G \Gamma_{j} G^{+}\right]\left(f_{i}(E)-f_{j}(E)\right)$ (used only if D is zero)

Pauli spin matrices: $\sigma_{x}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \sigma_{y}=\left[\begin{array}{cc}0 & -i \\ +i & 0\end{array}\right], \sigma_{z}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$

Problem 1: In HW3 we analyzed a 1-D wire

modeled with a Hamiltonian having $H_{n, n}=+2 t_{0}, H_{n, n+1}=-t_{0}=H_{n, n-1}$ (all other elements are zero), such that the dispersion relation is given by $E=2 t_{0}(1-\cos k a) . \Sigma_{1}$ is a matrix with all zeroes except for $\Sigma_{1}(1,1)=\Sigma$, while Σ_{2} has all zeroes except for $\Sigma_{2}(N p, N p)=\Sigma$, where $\Sigma(E)=-t_{0} e^{+i k a}$. Assume D $=0$.

We consider now the same wire but having a additional spin-orbit interaction term in the Hamiltonian for the channel : $H_{s o}=\eta k_{x}\left[\sigma_{y}\right]$. The contacts do not have any spin-orbit interaction and we will assume that we have separate contacts for up and down-spin channels described by $\Sigma_{1, u}, \Sigma_{1, d}, \Sigma_{2, u}, \Sigma_{2, d}$. This will allow us to calculate the transmission coefficients $T_{u u}$ and $T_{u d}$, from up to up and up to down respectively.
(a) Plot numerically the transmission coefficients $T_{u u}$ and $T_{u d}$ for each of three cases, namely when the up and down spins point along (i) $\pm \mathrm{z}$, (ii) $\pm \mathrm{x}$ and (iii) $\pm \mathrm{y}$, as a function of the Rashba coefficient η for a device of length 100 nm . Use $\mathrm{E}=0.2 \mathrm{eV}$, $\mathrm{a}=1 \mathrm{~nm}, \mathrm{~m}=$ 0.03 * free electron mass, $t_{0}=\hbar^{2} / 2 m a^{2}$ and $-1 e-10<\eta<1 e-10 e V-m$. Please remember to turn in a copy of your MATLAB codes.
(b) In part (a) you should find that the transmission oscillates as a function of η for cases (i) and (ii), but not for case (iii). Explain why. Obtain an expression for the period of the oscillation and compare with your numerical result. Hint: The Rashba interaction gives rise to an effective magnetic field that causes spins to precess.

Problem 2: (a) Prove that $\quad[\vec{\sigma} \cdot \vec{C}][\vec{\sigma} \cdot \vec{D}]\{\psi\}=\vec{C} \cdot \vec{D}\{\psi\}+i \vec{\sigma} \cdot[\vec{C} x \vec{D}]\{\psi\}$
where \vec{C} and \vec{D} are any two operators and $\{\psi\}$ is any two-component wavefunction.
(b) Use the result in part (a) to prove that $(\vec{B} \equiv \vec{\nabla} \times \vec{A})$

$$
[\vec{\sigma} \cdot(\vec{p}+q \vec{A})][\vec{\sigma} \cdot(\vec{p}+q \vec{A})]\{\psi\}=(\vec{p}+q \vec{A}) \cdot(\vec{p}+q \vec{A})\{\psi\}+q \hbar \vec{\sigma} \cdot \vec{B}\{\psi\}
$$

