ECE 659 MIDTERM EXAM

March 9, 2009 930A-1020A

CLOSED BOOK (Notes provided)

NAME :		
PUID# :		

Please show all work and write your answers clearly.

This exam should have seven pages.

Problem 1	[p. 2]	6 points
Problem 2	[p. 3]	6 points
Problem 3	[p. 4]	6 points
Problem 4	[p. 5, 6]	6 points
Problem 3	[p. 7, 8]	6 points

Total 30 points

Problem 1: A two-dimensional conductor has a single band with an isotropic E(k) relation of the form $E = Ak^{\alpha}$, where A and α are constants. Starting from the expression for the conductivity

$$\sigma_{zz} = q^2 \int dE \left(-\frac{\partial f}{\partial E} \right) \frac{D(E)}{WL} \frac{v^2 \tau}{2}$$

show that at low temperatures (for which $-\partial f/\partial E$ can be approximated by a delta function at $E = \mu$), irrespective of A and α , we can write the sheet conductivity $\sigma_{zz} = q^2 n_s \tau/m$, where n_s is the electron density and m is defined as $\hbar k/\nu$ evaluated at $E = \mu$.

Problem 2: A conductor with M modes has one point scatterer having a scattering matrix of the

$$\text{form } \begin{bmatrix} I_1^- \\ I_2^- \end{bmatrix} = \begin{bmatrix} R & T \\ T & R \end{bmatrix} \begin{bmatrix} I_1^+ \\ I_2^+ \end{bmatrix} = \frac{q}{h} M \begin{bmatrix} R & T \\ T & R \end{bmatrix} \begin{bmatrix} \mu_1^+ \\ \mu_2^+ \end{bmatrix}$$

with R+T = 1 ('+' denotes incoming flux, '-' denotes outgoing flux). Assuming $\mu_1^+ = qV$ and $\mu_2^+ = 0$, show that the average normalized electrochemical potential defined by $(\mu^+ + \mu^-)/2qV$ has the profile shown

and label the plateaus in the profile in terms of R and T.

What is the current $(I^+ - I^-)$?

Problem 3: A 2-D conductor in a vector potential $\vec{A} = \hat{x} A_x + \hat{y} A_y$ is described by the Hamiltonian ($\vec{p} = -i\hbar\vec{\nabla}$): $H_{op} = \frac{(p_x - qA_x)^2}{2m} + \frac{(p_y - qA_y)^2}{2m}$ Assume $A_x = -By$ and $A_y = 0$ (so that $\vec{\nabla} x \vec{A} = \vec{B}$).

Which of the following

A.
$$\psi = \exp(+ik_x x) \exp(+ik_y y)$$
 B. $\psi = \exp(+ik_x x) F(y)$ C. $\psi = F(x) \exp(+ik_y y)$ are acceptable solutions of the differential equation $E\psi = H_{op}\psi$ if

(a)
$$B = 0$$

(b)
$$B \neq 0$$
?

Explain your reasoning briefly.

Problem 4:

Consider a device described by a (2x2) Hamiltonian $[H] = \begin{bmatrix} \varepsilon_1 & t \\ t^* & \varepsilon_2 \end{bmatrix}$ whose coupling to

the contacts is described by
$$[\Sigma_1] = -\frac{i}{2} \begin{bmatrix} \gamma_1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $[\Sigma_2] = -\frac{i}{2} \begin{bmatrix} 0 & 0 \\ 0 & \gamma_2 \end{bmatrix}$

Show that for small 't', the local density of states (LDOS) at points "1" and "2" can be written as $D_{1,2}(E) \approx \gamma_{1,2} \left|g_{1,2}\right|^2/2\pi \,, \text{ where } g_{1,2}(E) \equiv 1/(E-\varepsilon_{1,2}+i\gamma_{1,2}/2) \,.$

Hint: The LDOS are related to the diagonal elements of the spectral function, [A(E)].

Also, you may find the following approximation helpful: $\begin{bmatrix} a & -t \\ -t^* & b \end{bmatrix}^{-1} \approx \begin{bmatrix} a^{-1} & a^{-1}tb^{-1} \\ b^{-1}t^*a^{-1} & b^{-1} \end{bmatrix}$

Problem 5:

Consider the same device as in Problem 4, described by a (2x2) Hamiltonian

$$[H] = \begin{bmatrix} \varepsilon_1 & t \\ t^* & \varepsilon_2 \end{bmatrix} \quad \text{whose} \quad \text{coupling} \quad \text{to} \quad \text{the} \quad \text{contacts} \quad \text{is} \quad \text{described} \quad \text{by}$$

$$[\Sigma_1] = -\frac{i}{2} \begin{bmatrix} \gamma_1 & 0 \\ 0 & 0 \end{bmatrix} \quad , \quad [\Sigma_2] = -\frac{i}{2} \begin{bmatrix} 0 & 0 \\ 0 & \gamma_2 \end{bmatrix}$$

Show that for small 't', the transmission $\overline{T}(E) = Trace[\Gamma_1 G \Gamma_2 G^*]$ can be written approximately as $4\pi^2 D_1(E) D_2(E) |t|^2$, where $D_1(E)$ and $D_2(E)$ are the local density of states at sites 1 and 2, which were shown in Problem 4 to be given by

$$D_{1,2}(E) \approx \gamma_{1,2} |g_{1,2}|^2 / 2\pi$$
, where $g_{1,2}(E) = 1/(E - \varepsilon_{1,2} + i\gamma_{1,2}/2)$.

As in Problem 4, you may find the following approximation helpful:

$$\begin{bmatrix} a & -t \\ -t * & b \end{bmatrix}^{-1} \approx \begin{bmatrix} a^{-1} & a^{-1}tb^{-1} \\ b^{-1}t * a^{-1} & b^{-1} \end{bmatrix}$$