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Please show all work and write your answers clearly.

This exam should have seven pages.
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Problem 1: A two-dimensional conductor has a single band with an isotropic E(k) relation of the

form E = Ak®, where A and o are constants. Starting from the expression for the conductivity
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show that at low temperatures (for which - df /JE can be approximated by a delta function at E
= p), irrespective of A and o, we can write the sheet conductivity o, = g’ n,t/m, where n, is

the electron density and m is defined as 7ik/v evaluated at E = p.
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Problem 2: A conductor with M modes has one point scatterer having a scattering matrix of the
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with R+T = 1 (‘+’ denotes incoming flux, ‘- denotes outgoing flux). Assuming u' =gV and

u, =0, show that the average normalized electrochemical potential defined by (u* + u)/2qV

has the profile shown
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and label the plateaus in the profile in terms of R and T.
What is the current (I" -17) ?




Problem 3: A 2-D conductor in a vector potential A=%A, +Y A, is described by the

- - 2 _ A 2
Hamiltonian (p = -inV):  H, = (p.-9gA)" (P, =94)
i _2m_‘ - 2m
Assume A, =-By and A, =0 (so that VxA = B).

Which of the following
A. vy =exp(+ik x) exp(+ik,y)  B.y =exp(+ik.x) F(y) C.y =F(x)exp(+ik,y)
are acceptable solutions of the differential equation Ey = H y if

(@)B=0

A,B,C

Bty

Explain your reasoning briefly.

®b)B=0?
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Problem 4:

f
Consider a device described by a (2x2) Hamiltonian [H]= [ti } whose coupling to

&

the contacts is described by  [Z,]= ifn 0 = ]—_—i— 00
Yy 14 210 0 s 2= 2 1o Vs

Show that for small ‘t’, the local density of states (LDOS) at points “1” and “2” can be written as

Dy,(E) =1y, |g,,|" /27, where g,,(E)= 1/(E ~ &, +i7,,/2).

Hint: The LDOS are related to the diagonal elements of the spectral function, [A(E)].
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Problem 5:

Consider the same device as in Problem 4, described by a (2x2) Hamiltonian

g t
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] whose coupling to the contacts is  described by
)

~ y, O ~ i‘O 0
(2=~ [O 0] ; [22]——2[0 72]

Show that for small ‘", the transmission T(E)= Trace[[,GT,G'] can be written
approximately as 4> D,(E) D,(E) l1*, where Dj(E) and D,(E) are the local density of
states at sites 1 and 2, which were shown in Problem 4 to be given by

D,(E)~1,, |8s| 127, where g, ,(E)=1/(E - &, +i7,,/2).

As in Problem 4, you may find the following approximation helpful:
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