
ECE 659: Quantum Transpor t Spr ing 2009 
EE 117, MWF 930A-1020P 

Course website: http://cobweb.ecn.purdue.edu/%7Edatta/659.htm 

 
Lecture videos posted at https://nanohub.org/resources/6172/ 

Midterm exam:
Covering Weeks 1-7: Semiclassical and Quantum transport 

 Monday, 3/9 

Closed book, notes  (see last 4 pages) will be provided 
 

General References 
1. Chapter 1, 7.1, 8, 9, 11.1, 11.2: Quantum Transport: Atom to Transistor  
2. Lectures 1A, B and 2A, B : http://www.nanohub.org/resources/5279 
3. Nanoelectronic Devices: A Unified View, http://arxiv.org/abs/0809.4460v2 
 

There will be five questions on the midterm exam. The homework problems 

(without the MATLAB implementation) are a good guide. In addition the following 

problems are intended to help you prepare. Solutions will be posted. 

 
Problem 1: A conductor has a single band with an isotropic E(k) relation of the form 

 

E = Akα , where A and 

 

α  are constants. Show that at low temperatures (for which 

 

− ∂f /∂E  can be approximated by a delta function at E = µ), irrespective of A and 

 

α , we 

can write for the sheet conductivity and the Hall resistance 

(a) 

 

σ zz = q2 ns τ /m, if m is defined as /k v  evaluated at E = µ. 

and  (b) 

 

RH = ωcτ /σ zz = B/qns 

where 

 

ns is the electron density per unit area. 

 

Problem 2: A conductor with M modes has one point scatterer having a scattering matrix 

of the form 
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with R+T = 1 (‘+’ denotes incoming flux, ‘-‘ denotes outgoing flux). 

(a) Assuming 

 

µ1
+ = qV and 

 

µ2
+ = 0, show that the average normalized electrochemical 

potential defined by 

 

(µ+ + µ−) /2qV has the profile shown below and label the 

plateaus in the profile. What is the current 

 

(I+ − I−) ? 
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(b) Now consider the same conductor but with two identical point scatterers, each 

having a scattering matrix with a transmission T. Label the plateaus in the 

average normalized electrochemical profile shown. What is the current 

 

(I+ − I−) ? 

(c) The electrochemical potential profile suggests that in part (a) we have three 

localized resistances, one associated with the scatterer and two associated with 

the interfaces. Divide the drop in potential across each of these by the current to 

obtain the magnitude of these resistances (normalized to 

 

h /q2M). 

(d) Compare the scatterer resistance (for the conductor with one scatterer) with what 

you obtain using the relation discussed in class: 

 

Y = (q2 /h) 2 [M − S ] [M + S ]−1 [M] 

(e) For part (b), obtain the four resistances associated with the two scatterers and the 

two interfaces. 

   One scatterer     Two scatterers 

  
 

Problem 3: Consider a junction between two conductors having 

 

M1  and 

 

M2  modes 

respectively (

 

M1 > M2 ) described by a scattering matrix of the form
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Assuming 

 

µ1
+ = qV and 

 

µ2
+ = 0, 

(a) show that the average normalized electrochemical potential defined by 

 

(µ+ + µ−) /2qV has the same profile as in Problem 2a and label the plateaus in the 

profile. 



(b) Find the current and each of the three resistances associated with the two 

interfaces and the junction respectively. 

(c) Compare the junction resistance with what you obtain using the relation discussed 

in class: 

 

Y = (q2 /h) 2 [M − S ] [M + S ]−1 [M] 

 

Problem 4: A 2-D conductor is described by a Hamiltonian of the form 

 

H =
(px − qAx)2

2m
+

(py − qAy)2

2m
 

where the vector potential ˆˆ x yA xA yA= +


 is constant in space. Find the dispersion relation 

 

E(kx,ky) assuming a wavefunction of the form ~ exp( . )ik rψ


  ? 

 

Problem 5: We wish to model the 2D conductor in Problem 4 with a discrete square 

lattice having a nearest neighbor Hamiltonian whose non-zero elements are 

,     n m m nH if d dε= =
 

 

, ˆexp( )    n m x x m nH t i if d d xaφ= − − − =
 

 , ˆexp( )     n m x x m nH t i if d d xaφ= − + − = −
 

 

, ˆexp( )    n m y y m nH t i if d d yaφ= − − − =
 

 , ˆexp( )    n m y y m nH t i if d d yaφ= − + − = −
 

 

All other elements are zero. Find the dispersion relation assuming a wavefunction of the 

form ~ exp( . )mik dψ
 

. How would you choose 

 

ε, tx, φx, ty and φy  so as to match the 

dispersion relation from Problem 4 for small energy E ? 

 

Problem 6: Consider a device with two terminals described by (1x1) matrices: H = 

 

[ε], 

 

Σ1 = [−iγ1 /2] and 

 

Σ2 = [−iγ 2 /2]. 

(a) Starting from the general NEGF equations for coherent transport, show that 

1 1 2 2

1 2

( ) ( )( ) ( )n f E f EG E A E γ γ
γ γ

+
=

+
 

1 2
1 2 1 2

1 2

( ) ( ) ( )( ( ) ( ))qI E I E A E f E f E
h

γ γ
γ γ

= − = −
+

 

(b) Now show that these equations remain unchanged even if we include incoherent 

processes through a non-zero D. 



 

Problem 7: A uniform wire is modeled as a discrete lattice with points spaced by ‘a’ 

 

 

 

having a Hamiltonian with 

 

Hn,n = 2t0  and 

 

Hn,n +1 = − t0 = Hn,n −1  (all other elements are 

zero), such that the dispersion relation is given by 

 

E = 2t0(1− coska). The two ends are 

connected to two contacts with Fermi functions 

 

f1 and 

 

f2 . 

 

(a) What is the local density of states at the point “0”, 

 

D(0, E) = A(0,0;E) /2π ? Hint: 

Treat the point “0” as the channel and represent the wire on either side through self-

energies. 

(b) Starting from the general NEGF equations for coherent transport, show that 

 

Gn (0,0;E) = A(0,0;E) f1(E) + f2(E)
2

 

1 2 1 2( ) ( ) ( ( ) ( ))qI E I E f E f E
h

= − = − ,  for 

 

0 < E < 4t0  

 (c) Suppose we cut the wire in Part (a) into two separate semi-infinite wires as shown so 

that 

 

H01 = H10 = 0 (other elements of the H-matrix remain unchanged). 

 

 

 

What is the local density of states at the point “0”, D(0,E) ? What is the current ? 

 
Problem 8: Consider a conductor with a single band (with two degenerate spins) with an 

isotropic E(k) relation of the form 

 

E = Akα , where A and 

 

α  are constants. Show that at 

low temperatures (for which 

 

− ∂f /∂E  can be approximated by a delta function at E = µ), 

irrespective of A and 

 

α , the ballistic conductance 

 

Gballistic = (2q2 /h)M , where 

 

M = 2ns /π W  for a 2D conductor of width W and ( )2/323 / 4M n Sπ π=  for a 3D 

conductor with a cross-section S. 
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Notes on Lectures 2-20: Semiclassical and Quantum Transport 

Lectures 2-4:
Fermi function: 

 Conductivity 

 

f (E) = 1/(1+ exp((E − µ) /kT)) 

Current  1 2 ( )( ( ) ( ))qI dE D E f E f E
h

πγ= −∫  

Ballistic / diffusive transport: /zv Lγ =   , 
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Electron density: ( , )( , ) ( ( , ) ( , ))
2

D z En z E f z E f z E
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Lectures 5-7:

 Potential Profiles  

 Electrochemical 

 
 

 

 

 

 

 

 
 

 
 

 

 
 
 
Hall voltage (in x-direction): 
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2

2 ( )  ( ) D E vwhere E q
WL d

τσ ≡  ,   cf. Eqs.(4.33) and (4.60) in 

 Lundstrom, Fundamentals of Carrier Transport, Cambridge (2000). 
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Lectures 8-10:

 

 Scattering Theory of Transport 

{ } { } { }
[ ]

[ ] [ ][ ]
S

i S i S M µ− + +

≡

= =


 , [ ][ ]S S M≡  

 Two-probe conductance, 

  2( / )[ ][ ]Y q h I S M= − 2( / )[ ]q h M S= −     (Total)  

  2 1( / )2[ ][ ] [ ]Y q h I S I S M−= − +    (Channel only) 

     2 1( / )2[ ][ ] [ ]q h M S M S M−= − +  

 Four-probe conductance,   

 

S =
A C
D B

 

 
 

 

 
  , 

1[ ] [ ][ ] [ ]P A C I B D−= + −  

  

 

A ≡ [A][MA], B ≡ [B][MB ]

 

, C ≡ [C][MB ], D ≡ [D][MA] 

   1[ ] [ ][ ] [ ] [ ][ ] [ ]A BP P M A C M B D−≡ = + −  

  2
2 ( / )[ ][ ]A

pt A
A

iY q h I P M
V

→ = = −    2( / )[ ]Aq h M P= −  

  2 1
4 ( / )[ ] [ ][ ]A

pt B
B

iY q h I P D I B M
V

−→ = = − −  

           2 1( / )[ ] [ ]A Bq h M P D M B−= − −  

Lectures 11-12,

 

(2π /L)d

 Semiclassical density of states is calculated from E(k) relation by 

noting that each state occupies a volume (  in k-space, d being the number of 

dimensions. Semiclassical dynamics from ( , )E r k
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Cyclotron Frequency:  2 ( n)d A k qBT
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Lectures 13-20

 

Σ j

, Quantum Transport: The NEGF equations for elastic (but not 

necessarily coherent) transport, with all dissipation limited to contacts. Inelastic 
transport with dissipation in channel to be discussed later in the course. 
"Input": H-matrix parameters chosen appropriately to match energy levels or 

dispersion relations.  for terminal 'j' is in general obtained from 

 

τ j g j τ j
+
 where 

the surface Green function ‘g’ is calculated from a recursive relation: 

 

g −1 = EI −α − βgβ + . 

 

Γ j = i[Σ j − Σ j
+] , 

 

Γs = i[Σs − Σs
+] 

 

Σ ≡ Σs +
j

∑ Σ j , 

and 

 

Σin ≡ Σs
in +

j
∑ Σ j

in
 

Note:  

 

Σ j
in = Γ j f j  , but 

 

Σs
in  cannot in general be written as 

 

Γs fs . 

Instead it has to be calculated self-consistently from 

 

Σs[ ]= D G[ ], 

 

Σ s
in[ ]= D Gn[ ] 

where D describes incoherent processes (has nothing to do with density of stets D(E)). 

 1.

 

G(E) = [EI − H − Σ1 − Σ2 − Σs] −1 2. 

 

[Gn (E)] = [G ΣinG+] 

 3.

 

A(E) = i[G − G+] = GΓG+ = G+ΓG   

4. [ ] [ ] [ ]n n n n in in
opi I HG G H G G G G+ += − + Σ − Σ + Σ − Σ  

4a. 

 

Ia →b (E) =
q
h

i [HabG ba
n − G ab

n Hba ] a, b: Internal Points 

4b. 

 

Ii(E) =
q
h

( (Trace[Σi
in A− ΓiG

n ])       Current/energy at terminal ' i'   

  4c. 

 

Ii(E) =
q
h j

∑ Trace[ΓiGΓ jG
+]( fi (E) − f j (E))  (used only if D is zero) 

  H    
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