ECE 659: Quantum Transport Spring 2009
 EE 117, MWF 930A-1020P
 Course website: http://cobweb.ecn.purdue.edu/\%7Edatta/659.htm

Lecture videos posted at https://nanohub.org/resources/6172/

Final exam: Thursday, 5/7, 7PM - 9PM, Lawson, B155
Cumulative, Closed book, notes (4 pages) will be provided

General References

1. Chapter 1, 4, 7.1, 8-11: Quantum Transport: Atom to Transistor
2. Lectures 1-5A, B: http://www.nanohub.org/resources/5279
3. Nanoelectronic Devices: A Unified View, http://arxiv.org/abs/0809.4460v2

There will be five questions on the final exam, one from each of the topics we have covered: Semiclassical transport, quantum transport, spin transport, energy transport and correlated transport. The homework problems (without the MATLAB implementation) are a good guide. The last practice exam is also a good guide regarding the first two topics. In addition the following problems are intended to be a guide to the last three topics.

Problem 1: A two-component spinor $\{\psi\}$ evolves in time according to the equation $i \hbar \frac{d}{d t}\{\psi\}=\mu_{B}[\vec{\sigma} \cdot \vec{B}]\{\psi\}$, where $\vec{\sigma}$ represents the Pauli spin matrices. Show that the spin $\vec{S} \equiv \psi^{+} \vec{\sigma} \psi$ evolves according to $\frac{d}{d t} \vec{S}=\frac{2 \mu_{B}}{\hbar} \vec{B} x \vec{S}$. Useful result: $(\vec{a} x \vec{b})_{m}=\varepsilon_{m n p} a_{n} b_{p}$

Problem 2: Consider a channel with two spin levels, described by a (2x2) Hamiltonian $[H]=\varepsilon_{0} I+\varepsilon \sigma_{z}$, connected to two anti-parallel contacts 1and 2, one communicating exclusively with +x spins and the other with -x spins. (a) Write down the self-energy matrices Σ_{1} and Σ_{2}. (b) Calculate the spectral function [A]. A small bias is applied so that over a small energy range
around $\mathrm{E}=0$ where we can assume $f_{1}=1$ and $f_{2}=0$. Find (c) the correlation function G^{n} and (d) the number of electrons N and the spin \vec{S} in the channel.

Problem 3: Consider a 2-D conductor in the $x-y$ plane described by the Hamiltonian

$$
H=\frac{p^{2}}{2 m}+C \vec{\sigma} \cdot(\overrightarrow{\mathrm{E}} x \vec{p})
$$

where m is the effective mass, C is a real constant and $\vec{p} \equiv-i \hbar \vec{\nabla}$. There is a strong electric field perpendicular to the plane of the conductor : $\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{z}$. Assume a plane wave solution of the form $\exp [\mathrm{i}(\vec{k} \cdot \vec{r}-E t / \hbar)]\binom{\psi}{\bar{\psi}}$, where \vec{k} lies in the x-y plane and obtain the dispersion relation $\mathrm{E}(\overrightarrow{\mathrm{k}})$.

Problem 4: Starting from $\left[\sum_{s}^{i n}(E)\right]=D(+\varepsilon)\left[G^{n}(E-\varepsilon)\right]$
and $\quad\left[\Gamma_{s}(E)\right]=D(+\varepsilon)\left[G^{n}(E-\varepsilon)\right]+D(+\varepsilon)\left[G^{p}(E+\varepsilon)\right]$ show that
(a) the integrated scattering current is zero, though it may not be zero at each energy E:

$$
\int d E I_{i}(E)=\frac{q}{h} \int d E \operatorname{Trace}\left[\Sigma_{s}^{i n} A-\Gamma_{s} G^{n}\right]=0
$$

(b) the scattering current is zero at each energy if both the electrons and the scatterers are at equilibrium at the same temperature T.

Problem 5: Consider a device having one energy level ε with equal escape rates $\gamma_{1} / \hbar=\gamma_{2} / \hbar=10^{12} / \mathrm{sec}$. (small enough that the broadening can be neglected) with an applied voltage $V_{D}=\left(\mu_{1}-\mu_{2}\right) / q$ such that

$$
\varepsilon-\mu_{1}=k_{B} T \text { and } \varepsilon-\mu_{2}=2 k_{B} T
$$

Calculate the (a) current, (b) power delivered by the battery, (c)
 power dissipated in (or absorbed from) contact 1 and (d) power dissipated in (or absorbed from) contact 2. Assume $k_{B} T=0.025 \mathrm{eV}$.

Problem 6: A channel has two energy levels ε_{1} and ε_{2} corresponding to four levels $00,01,10$ and 11 in the multi-electron picture. Apply the law of equilibrium in the multi-electron picture to
obtain the equilibrium occupation probabilities assuming zero interaction energy $\left(\mathrm{U}_{0}=0\right)$ for the four levels and show that

$$
P_{00}=\left(1-f_{1}\right)\left(1-f_{2}\right), P_{01}=\left(1-f_{1}\right) f_{2}, \quad P_{10}=f_{1}\left(1-f_{2}\right) \text { and } P_{11}=f_{1} f_{2}
$$

where f_{1} and f_{2} are the equilibrium Fermi functions corresponding to the two energy levels.

Problem 7: A channel has a very large number N of degenerate states all having the same energy ε in equilibrium with an electrochemical potential μ and temperature T. Starting from the general law of equilibrium $P_{n}=(1 / Z) e^{-\left(E_{n}-n \mu\right) / k_{B} T}$, show that the fraction of occupied states can be written as $f \equiv \frac{n}{N}=\frac{1}{\exp \left(\frac{\varepsilon+\alpha-\mu}{k_{B} T}\right)+1}$ if the interaction energy $\mathrm{U}(\mathrm{n})$ can be approximated as $U(n) \cong U_{0}+\alpha n$. Useful result: $\sum_{n}{ }^{N} C_{n} x^{n}=(1+x)^{N}, \sum_{n}{ }^{N} C_{n} n x^{n}=N x(1+x)^{N-1}$

Problem 8: Consider two coupled quantum dots each with two spin-degenerate levels, such that
the one-electron Hamiltonian, $\quad h=\left[\begin{array}{cccc}a & b & \bar{a} & b \\ \varepsilon & t & 0 & 0 \\ t & \varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon & t \\ 0 & 0 & t & \varepsilon\end{array}\right]$
having an intra-dot interaction energy U and zero inter-dot interaction energy.
At what values of μ does the total number of electrons change from $N=0$ to 1 to 2 to 3 and finally to 4 ?

Useful result: Eigenvalues of $\left[\begin{array}{cccc}a & 0 & t & t \\ 0 & a & t & t \\ t & t & b & 0 \\ t & t & 0 & b\end{array}\right]$
are $\quad a, b$ and $\frac{(a+b) \pm \sqrt{(a-b)^{2}+16 t^{2}}}{2}$

