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Review
00:03

• Our goal in this course is to calculate the 
current through a small device:

• Last time we discussed the change in the 
electron density due to the gate voltage. 
As VG changes the levels in the channel 
move up and down.

• How large is the number of added 
electrons per cm^2 if we add one to each 
atom? 

• So if the gate voltage adds 10^12/cm^2, 
that number is relatively small because it 
adds 1 electron every 100 Å by 100 Å.

1Å
1Å

216 /10 cmnadded =

Insulator
Channel DrainSource

z
x

-t0
EC+2t0

Σ1 Σ2

… -1 0 1 2 3 4 5  …N N+1 …

t0 = ħ2/(2ma2)

Insulator

GV

Substrate



Overview
04:40

• Today we’d like to discuss broadening. Up till now we’ve been talking about isolated 
structures:

• But if we consider open systems, we have to know what broadening does in order to 
calculate current. 
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Broadening: Importance
05:25

At the beginning of the course we discussed 
broadening. There it was mentioned that if 
broadening wasn't taken into account then the 
calculated current wouldn’t be right and not 
saturate.
• However if we include broadening, the some 
part of the broadened level lies outside of the 
range between mu1 and mu2; hence it that part 
will not contribute to the current and the current 
saturates.

• Maximum current was given as:

• We calculated the current to be:

• Broadening included, we had:
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Broadening: Importance
10:15

• The concept of broadening is also very important for 
small devices. As the channel is made smaller and 
smaller, the levels become discretized. The spacing 
between them depends on the length of the channel: 
L.. The shorter the channel, the larger the spacing. If 
the spacing is bigger than kT, then the expectation is 
that it will have significant effect on observables. For 
small transistors with very good contacts however 
this has not been the case. This is due to the 
significant broadening of the levels because of good 
connection to contacts which negates the effect of 
spacing. (As the figure shows broadening of the 
levels makes them closer together.) How ever one 
can see observable effects if the contacts are 
connected poorly.
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Isolated System
14:55

• To start, think of an isolated system. The 
matrix version of Schrödinger equation 
reads: 

• (1) can be written as:

• The only non trivial (non zero) 
wavefunction solution to (2) happens when 
the matrix that multiplies psi on the left is 
singular, i.e. it does not have an inverse. 
• For the box problem, electrons can only 
exist on the discrete energy levels.
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Channel and a Contact
16:48

• In this the electrons can from a continuum of allowed 
states in the contact want to get into the channel. The 
governing equation for the channel can now be written as:    
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Schrödinger Equation / 
Wave Equation 

18:22
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• Schrödinger equation is a wave equation. A common example of a wave equation is the 
acoustic waves on a string. There the quantity that is used to describe the wave is the 
displacement of each point on a string from an equilibrium point at a particular time. In the 
case of Schrödinger equation this would be the allowed energy levels.
• The problem we are trying to understand today is analogous to the plucking the guitar string 
and investigating the frequencies at which it vibrates.
• In our case we are hitting the channel with electrons from the contact. What we like to 
understand is the change to the energy levels in the channel which were the energy levels of 
a particle in a box prior to being hit by electrons. In other words we are interested in the 
excitation of the channel due to contact. This change in the problem results in the following 
change in the Schrödinger equation:
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24:25

• The following forms of solution will satisfy 
the nth equation: 

• Provided the following E-k relation holds: 
(use the nth Eq. to find E in terms of k)

• The general solution can be written as:
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Broadening:
A Simple Example



37:45

• We want to get rid of phi_-1 term in the first equation and replace it with a Σ that describes 
the effect of the contact on the channel. To do this start with the general solution: 

• Substitute (2) in the 1st Equation→

• If the channel was isolated from the contact we’d have: 
• With connection to the contact we have additional terms (Equation 3) which can be 
grouped and denoted as:
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46:30

• One main difference between H and Σ is that the diagonal elements of Σ are complex in 
general whereas H has real values for its diagonal elements because it has to be Hermitian.
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46:52
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• We can define a broadening matrix as 
the imaginary part of Σ:
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• Physically, gamma represents the effect of connecting 
the channel to the semi-infinite contact. In the contact we 
have the dispersion relation:

• And velocity can be written as:
dk
dEv =

• This means that we can write gamma as: av /=Γ

• An electron in the contact wants to escape from the contact with the velocity v. This way 
we can interpret Gamma as a measure of hot fast the electron can get out of the contact.
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Physical Picture


	Lecture 31: Broadening
	Review
	Overview
	Broadening: Importance
	Broadening: Importance
	Isolated System
	Channel and a Contact
	Schrödinger Equation / Wave Equation 
	Broadening: A Simple Example
	Broadening: Example Continued
	Broadening: Physical Picture
	Broadening: Physical Picture

