ECE 495N, Fall'08 ME118, MWF 1130A - 1220P

HW\#4: Due Wednesday Oct. 15 in class.

Note: Problems 4 and 5 are carried over from HW\#3

Problem 1: Consider the (2x2) matrix $\left.\quad \mathrm{A}=\left\lvert\, \begin{array}{cc}\cos \theta & \sin \theta \\ e^{-i \varphi} \\ \sin \theta e^{+i \varphi} & -\cos \theta\end{array}\right.\right]$
Show that the following

$$
V_{1} \equiv\left\{\begin{array}{l}
\cos (\theta / 2) e^{-i \varphi / 2} \\
\sin (\theta / 2) e^{-i \varphi / 2}
\end{array}\right\} \text { and } \quad V_{2} \equiv\left\{\begin{array}{c}
-\sin (\theta / 2) e^{-i \varphi / 2} \\
\cos (\theta / 2) e^{+i \varphi / 2}
\end{array}\right\}
$$

are eigenvectors of $[\mathrm{A}]$. What are the corresponding eigenvalues?
Are they orthogonal (that is, is $V_{1}^{+} V_{2}=0$)?
Note: the superscript '+’ denotes Hermitian conjugate.

Problem 2: Define a (2x2) matrix [V] $\equiv\left[\left\{V_{1}\right\}\left\{V_{2}\right\}\right]$
Now calculate the matrix $[B]=\left[\mathrm{V}^{+}\right][\mathrm{A}][\mathrm{V}]$.
(A and $[V] \equiv\left[\left\{V_{1}\right\}\left\{V_{2}\right\}\right]$ are given in Problem 1).
Assuming $\theta=\frac{\pi}{2}, \varphi=0$, use MATLAB to find $[\mathrm{V}]$ and check that $[\mathrm{B}]=\left[\mathrm{V}^{+}\right][\mathrm{A}][\mathrm{V}]$.
(HINT: use "[V, B]=eig(A)" command)

Problem 3: Using the $2 s$ and the three $2 p$ levels as basis functions write down the Hamiltonian matrix for a hydrogen atom in an electric field F directed along the x -axis. Find the eigenvalues and eigenvectors. You may find Section 4.4.2 (page 99) of the text useful.

Problem 4: A channel has two energy levels ε_{1} and ε_{2} corresponding to four levels 00,01 , 10 and 11 in the multi-electron picture. Apply the law of equilibrium in the multi-electron picture to obtain the equilibrium occupation probabilities assuming zero interaction energy $\left(U_{0}=0\right)$ for the four levels and show that

$$
P_{00}=\left(1-f_{1}\right)\left(1-f_{2}\right), P_{01}=\left(1-f_{1}\right) f_{2}, \quad P_{10}=f_{1}\left(1-f_{2}\right) \text { and } P_{11}=f_{1} f_{2}
$$

where f_{1} and f_{2} are the equilibrium Fermi functions corresponding to the two energy levels.

Problem 5: A channel has four degenerate energy levels all having the same energy $\varepsilon=0$ eV with an interaction energy that can be written as $U_{e e}=U_{0} N(N-1) / 2$, where $U_{0}=0.1$ eV . The figure below shows the change in the equilibrium number of electrons, N inside the channel as the electrochemical potential μ is changed. What are the values of μ at which the transitions in N take place (labeled $\mu 1, \mu 2, \mu 3$ and $\mu 4$ in the figure) ?

$\begin{array}{ccc}\mu 1 & \mu 2 & \mu 3\end{array} \quad \mu 4$

