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* In the last few lectures we’ve been
Y, discussing coherent transport where
Insulator electrons go through the channel without
Source Channel loosing energy or dissipating heat.

Insulator » Using the general form, current can be
s Calculated as fO"OWS:

T 1Y% EH+2t GE)=(EI-H-%-%,)"
2y A=i(G-G")
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R = 202M T (E) =Trace(FlGl“zG+)




Schrédinger Equation

{a—fdzﬂum}4m=Ewu)
m dx

Since there is a non-zero potential at x=0,
the general solution for the wire cannot be
written as plane waves. Every where else
the wire is uniform and solutions to the
Schrodinger equation can be written in the
form of plane waves.(e =" )

» Using the general form, current can be
calculated as follows:

GE)=(EI-H-%-%,)"
A=i(G-G")
I, =i(Z, - ;)
T, =i(Z,-Z})

=23 [AET(EX,(E)- £.(E))

T(E)= Trace(FlGFZG+)




e For a uniform 1-D wire we have;

[EC —Zh—d—2+u (x)}w(x) = Ey(¥)
m, dx

* Based on the discrete lattice above
Schrddinger equation becomes a matrix
equation.  Continuous Discrete

W (X) =W,y etc.

» The Hamiltonian is tri diagonal
i 0
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» The sigma’s can be written as:



e Small One Level Device
1D Leads (Uniform Wires)

-to
Simple example of a device with /Z[H]MZ\
only one lattice point: X H X

Device

Ec+2t0 Ec+2to+U

:H]:EC+2tO+$
> L (E)]= _at‘oe ika}where: E =E,+2t,(1-coska)

=E_+2t, -t -te™ (1)
1

2, (ED]= —tee™
G(E)=(EI-H-%,-Y,)" =

E-E, -2t,— U—+t0e”‘al +t,e"
£ 1

Using (1) = _ _ _ — =
t """"—Ug+t0e"“"‘+t0e"‘a —%+ 2it, sin ika




H]|=E, +2t, + 2o
> L (E)]= _atloe ka | Where: E = E, +2t,(1—-coska)
> L,(E)]= -t,e™ =E, +2t, _toeika _toe_ika (1)

1

GE)=(EI-H-%-Y,)" = ES
E-E_ -2t —§+t0e'ka +t,e™
1

Using (1) = = =

ka4 ocika U +t e+t e’ — 2, 21ty sin Ika

— e —te
= 0 0 A 3

E =E, +2t,(1-coska)
* In a 1D wire we find the velocity ca be written as: 1dE a
' :£W=%Ztosin ka (3)

1
« Finally substituting 3 in 2 we can write G as:G = ¥ = |G(E) = a
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» The spectral function can be found from G:

A—i(G—G*):ia(_ L 4 j:ia(_ ..
iwv-U —iav-U iwv-U 1av+U
2anv
hove +U°

* We can find transmission using:f(E) — Trace(FlGFZG+)
Flzi(Zl_z;) F2=i(22—25) Z1:22:_t0eika
=T, =ifte st )=t isinka 0 |57 A el

a v_gﬁ_%Ztosin ka (3)

A(E) =

2 2
T(E) = Trace(FlGFZG+): (hvj a

a ) hv?+U?




"= wnau fapers

transmission w‘

1D Leads (Uniform Wires)
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* When U=0, T=1 from the formula above. Device
Physically, electron is really passing Ec+2to0 Ec+2to+U
through a uniform wire and we expect the
transmission to be 1.

» Green’s Function Method

» Advantage: Having a new problem, one can derive
the answers quickly without having to go through the
detailed physics.

» Disadvantage: One can calculate every thing
without really understanding anything.



* Local density of states can be found from the spectral

function:
2ahv
h2v? +U?2

A(E) =

A(E) 1 ahv
27 7 hiv? +U*?

LDOS (E) =

* Again if we set U=0 we get the old result that we found for a
1D wire:
1

PE)= T
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