ECE 495N EXAM I

CLOSED BOOK

Wednesday, Oct.1, 2008

NAME:_	SOLUTION	
PUID # : _		

Please show all work and write your answers clearly.

This exam should have seven pages.

Total	25 points	
Problem 3	[p. 6, 7]	9 points
Problem 2	[p. 4, 5]	8 points
Problem 1	[p. 2, 3]	8 points

Problem 1: We have seen in class that the current-voltage (I-V) characteristics of a nanoscale device can be calculated from

$$I = \frac{2q}{\hbar} \int dE \ D(E - U) \frac{\gamma_1 \gamma_2}{\gamma_1 + \gamma_2} \left[f_1(E) - f_2(E) \right]$$

where
$$f_1(E) = \frac{1}{e^{(E-\mu_1)/kT} + 1}$$
 and $f_2(E) = \frac{1}{e^{(E-\mu_2)/kT} + 1}$

Also $U = U_L + U_0(N - N_0)$. Assume $U_0 = 0$ and the Laplace potential U_L to be a fraction α of the drain potential V_D (the source potential is assumed zero):

$$U_{L}=-\,q\;\alpha V_{D}$$
 , α being a constant between 0 and 1.

A channel has a density of states as shown, namely a constant nonzero value for $E \ge E_c$ and zero for $E < E_c$. Assume that equilibrium electrochemical potential μ is located above E_c as shown. Sketch the current versus drain voltage assuming that the electrostatic potential of the channel (a) remains fixed with respect to the source ($\alpha = 0$) and (b) assumes a value halfway between the source and drain potentials ($\alpha = 0.5$),

Explain your reasoning clearly.

(a) Channel potential fixed with respect to source: $\alpha = 0$.

7/// : Additional Current

----: Equilibrium chemical potential

Problem 2: We have seen in class that free electrons in the absence of any external potential are described by (in one dimension)

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} \tag{1}$$

whose solutions can be written in the form $\psi(x,t) = \bigcup_{constan t} e^{+ikx} e^{-iEt/\hbar}$ (2)

 $E = \hbar^2 k^2 / 2m$ with E and k related by the dispersion relation: (3)

We have also seen that if the electrons are confined in a box of length L, the energy levels become discrete with the lowest energy given by $E_1 = \hbar^2 \pi^2 / 2mL^2$

- (a) Can you suggest a suitable differential equation to replace (1) if you wanted the dispersion relation to look like $E = A k^4$ (A being a constant) instead of (3)?
- (b) If a system of electrons with a dispersion relation given by (3') were confined in a box of length L, how would the expression for the lowest energy given in (4) be modified?

(a)
$$ih \frac{\partial \psi}{\partial t} = A \frac{\partial^4 \psi}{\partial x^4}$$

(a)
$$i\hbar \frac{\partial \psi}{\partial t} = A \frac{\partial^4 \psi}{\partial x^4}$$

(b) $E_1 = A \cdot (\pi/L)^4$

Problem 3:

A box has four degenerate energy levels all having energy ε . We know that for non-interacting electrons the maximum current under bias is

$$I = \frac{q}{\hbar} \frac{4\gamma_1 \gamma_2}{\gamma_1 + \gamma_2}$$

Use the multielectron picture to derive the correct expression for the maximum current if the electron-electron interaction energy is so high that no more than one electron can be inside the box at the same time.

$$\frac{P_{0000} \cdot 4\gamma_{2}}{P_{0000}} = \frac{P_{0001} + P_{0010} + P_{0100} + P_{1000}}{P_{1000}} \cdot \gamma_{1}$$

$$\frac{P_{1}}{P_{0}} = \frac{4\gamma_{2}}{\gamma_{1}} \Rightarrow \frac{P_{1}}{P_{0} + P_{1}} = \frac{4\gamma_{2}}{\gamma_{1} + 4\gamma_{2}}$$

$$I = \frac{9}{h} \gamma_{1} P_{1} = \frac{9}{h} \frac{4\gamma_{1} \gamma_{2}}{\gamma_{1} + 4\gamma_{2}}$$