ECE 495N, Fall'08 Fundamentals of Nanoelectronics

Final examination: Friday 12/19/08, 7-9 pm in LYNN G167.

Cumulative, closed book. Equations listed on this page will be provided.

Simpler version $n(E)=D(E) \frac{\gamma_{1} f_{1}(E)+\gamma_{2} f_{2}(E)}{\gamma_{1}+\gamma_{2}} \quad$ Electron density

$$
\begin{array}{ll}
I_{i}(E)=\left(q \gamma_{i} / \hbar\right)\left(D(E) f_{i}(E)-n(E)\right) & \text { Current/energy } \\
I(E)=\frac{q}{\hbar} \frac{\gamma_{1} \gamma_{2}}{\gamma_{1}+\gamma_{2}} D(E)\left(f_{1}(E)-f_{2}(E)\right) & \text { 2-terminal current }
\end{array}
$$

Ballistic transport: $\gamma_{1}=\gamma_{1}=\hbar v_{x} / L$. In diffusive regime $d I^{\prime} / d x=d I^{-} / d x=-I / m f p$, leading to a reduction in the current $I=I^{+}-I^{-}$by a factor $\boldsymbol{m} \boldsymbol{f p} /(\boldsymbol{m} f \boldsymbol{p}+\boldsymbol{L})$.

In general H has to be replaced with $H+U$, and $D(E)$ with $D(E-U)$ where U has to be calculated self-consistently from an appropriate "Poisson"-like equation.

$$
\begin{aligned}
& \text { Other useful relations: } \quad f(E)=\frac{1}{1+\exp (E-\mu) / k T} \quad \text { Fermi function } \\
& \qquad \begin{array}{r}
P_{\alpha}=(1 / Z) \exp \left(-\left(E_{\alpha}-\mu N_{\alpha}\right) / k T\right)
\end{array} \quad \text { Law of equilibrium } \\
& {[h(\vec{k})]=\sum_{m}\left[H_{n n}\right] \exp \left(i \vec{k} .\left(\vec{d}_{m}-\vec{d}_{n}\right)\right) \quad \text { Bandstructure }} \\
& D(E)=\sum_{\bar{k}} \delta(E-\varepsilon(\vec{k})) \quad \text { Density of states } \\
& M(E)=\sum_{\vec{k}} \delta(E-\varepsilon(\vec{k})) \frac{\pi \hbar\left|v_{s}(\vec{k})\right|}{L} \quad \text { Density of modes }
\end{aligned}
$$

Problem 1 (Simple model for conduction): Suppose a material has a density of states (per unit energy), $D(E)=A E^{\alpha}$ and a density of modes (dimensionless), $M(E)=B E^{\beta}$, where $\mathrm{A}, \mathrm{B}, \alpha$ and β are constants. Assuming ballistic transport, obtain an expression for the conductance as a function of the total number of electrons N at $\mathrm{T}=0 \mathrm{~K}$. Hint: First, obtain separate expressions for N and the conductance as a function of the equilibrium electrochemical potential μ.

Problem 2 (Multi-electron picture):

Multi-electron picture
(state 11 excluded because it is energetically inaccessible)

00
(a) A box has two degenerate energy levels both having energy $\boldsymbol{\varepsilon}$. Use the multielectron picture to derive the correct expression for the maximum current if the electron-electron interaction energy is so high that no more than one electron can be inside the box at the same time. Your answer should be in terms of $\gamma_{1}, \gamma_{2}, q$ and \hbar, assuming a bias polarity such that $\mu_{1}>\mu_{2}$, as shown.
(b) Assuming $\gamma_{1}=10 \gamma_{2}$. if we reverse the polarity of the applied bias so that $\mu_{1}<\mu_{2}$. will the current change? By what factor ?

Problem 3 (Bandstructure): Consider an infinitely long linear 1-D lattice (lattice constant: a) with one s-orbital per atom (assumed orthogonal) and having a site energy of E_{0}, so that the Hamiltonian looks like (t is real)

$$
H=\left[\begin{array}{ccccc}
\varepsilon & t e^{i \varphi} & 0 & 0 & \cdots \\
t e^{-i \varphi} & \varepsilon & t e^{i \varphi} & 0 & \cdots \\
0 & t e^{-i \varphi} & \varepsilon & t e^{i \varphi} & \cdots \\
\cdots & \cdots & \cdots & &
\end{array}\right]
$$

Impose periodic boundary conditions and assume a solution of the form

$$
\phi_{n}=\phi_{0} e^{i k n a}
$$ to find the dispersion relation $\mathrm{E}(\mathrm{k})$.

Problem 4 (Density of states): A three-dimensional conductor (S: cross-sectional area, L: Length) has an $\mathrm{E}(\mathrm{k})$ relationship $E=B k^{2}$. Find the density of states (per unit energy), $\mathrm{D}(\mathrm{E})$ and the density of modes (dimensionless), $\mathrm{M}(\mathrm{E})$.

Problem 5 (spin): Consider a device with two spin-degenerate levels, described by a (2×2) Hamiltonian $[H]=\left[\begin{array}{cc}\varepsilon & 0 \\ 0 & \varepsilon\end{array}\right]$. A magnetic field B is applied along an arbitrary direction $\overline{\mathrm{B}}=\hat{z} \sin \theta \cos \varphi+\hat{y} \sin \theta \sin \varphi+z \cos \theta$.
This gives rise to an additional term in $[\mathrm{H}]$ that can be written as $\left[H_{\bar{\beta}}\right]=\mu_{\bar{i}} B\left[\begin{array}{cc}+1 & 0 \\ 0 & -1\end{array}\right]$
if we use up- and down-spins along \hat{n} as our basis. Transform bases to up and down spins along \hat{z}, to show that $\left[H_{B}\right]$ can be written in the form $\left[H_{B}\right]=\mu_{B} B_{x}\left[\sigma_{x}\right]+\mu_{B} B_{y}\left[\sigma_{y}\right]+\mu_{B} B_{z}\left[\sigma_{z}\right]$. Find the matrices $\left[\sigma_{x}\right],\left[\sigma_{y}\right]$ and $\left[\sigma_{z}\right]$.

Problem 6 (Matrix model for conduction): (a) Consider an infinite wire modeled as a discrete lattice with points spaced by 'a'

having a Hamiltonian with $H_{n, n}=2 t_{0}$ and $H_{n, n+1}=-t_{0}=H_{n, n-1}$ (all other elements are zero), such that the dispersion relation is given by $E=2 t_{0}(1-\cos k a)$. What is the local density of states at the point " 0 ", $\mathrm{D}(0, \mathrm{E})$?
(b) Suppose we cut the wire in Problem 2 into two separate semi-infinite wires as shown so that $H_{01}=H_{10}=0$ (other elements of the H -matrix remain unchanged).

What is the local density of states at the point " 0 ", $\mathrm{D}(0, \mathrm{E})$?

Useful Relations: 1. $\sin \theta=2 \sin (\theta / 2) \cos (\theta / 2)$,

$$
1+\cos \theta=2 \cos ^{2}(\theta / 2), 1-\cos \theta=2 \sin ^{2}(\theta / 2)
$$

2. Spins along $+\boldsymbol{A}:\left\{\begin{array}{ll}C & s\end{array}\right\}^{T},-\boldsymbol{A}:\left\{\begin{array}{ll}-s^{*} & c^{*}\end{array}\right\}^{T}$ (T:transpose) where $\quad c \equiv \cos (\theta / 2) e^{-i \varphi / 2}$ and $s \equiv \sin (\theta / 2) e^{+i \varphi / 2}$
