ECE 659: Quantum Transport Spring 2009

Course website: http://cobweb.ecn.purdue.edu/\~datta/659.htm Lecture videos posted at https://nanohub.org/resources/6172/

Fermi function: $\quad f(E)=1 /(1+\exp ((E-\mu) / k T))$
Current

$$
I=\frac{q}{h} \int d E \pi \gamma D(E)\left(f_{1}(E)-f_{2}(E)\right)
$$

Ballistic / diffusive transport: $\gamma=\hbar v_{z} / L, \quad I=q \int d E \underbrace{\frac{D v_{z}}{2 L}}_{\equiv \tilde{M}(E) / h}\left(f^{+}(E)-f^{-}(E)\right)$

$$
=q \int d E \frac{D(E)}{2 L} \frac{v_{z} \lambda}{\lambda+L}\left(f_{1}(E)-f_{2}(E)\right), \quad \lambda=2 v_{z} \tau
$$

Electron density: $\quad n(z, E)=\frac{D(z, E)}{2 L}\left(f^{+}(z, E)+f^{-}(z, E)\right)$

$$
\begin{aligned}
& \frac{d f^{+}}{d z}=\frac{d f^{-}}{d z}=-\frac{f^{+}-f^{-}}{\lambda}, \quad \lambda \equiv 2 v_{z} \tau \\
& f^{+}(z, E)-f^{-}(z, E)=\frac{\lambda}{\lambda+L}\left(f_{1}(E)-f_{2}(E)\right)
\end{aligned}
$$

Linear Response:

$$
I \approx \int d E\left(-\frac{\partial f}{\partial E}\right) \tilde{I}(E), \quad \Delta \mu \ll k T
$$

$$
\begin{aligned}
\tilde{I} \approx q & \frac{D(E)}{2 L} v_{z}\left(\mu^{+}-\mu^{-}\right)=q^{2} \frac{D(E)}{2 L} \frac{v_{z} \lambda}{\lambda+L}\left(\frac{\mu_{1}-\mu_{2}}{q}\right) \\
& =\underbrace{q^{2} \frac{D(E)}{W L} \frac{v^{2} \tau}{d}}_{\equiv \tilde{\sigma}(E)} \frac{W}{\lambda+L} V \quad(d=2 \text { for } 2 D, 3 \text { for } 3 D)
\end{aligned}
$$

$\tilde{I}=\tilde{\sigma} \frac{W}{\lambda+L} V \rightarrow$, if contact resistance is eliminated $\tilde{I}=\tilde{\sigma} \frac{W}{L} V$
$\sigma_{z z}=\int d E\left(-\frac{\partial f}{\partial E}\right) \tilde{\sigma}(E), \quad \sigma_{z x} \approx \int d E\left(-\frac{\partial f}{\partial E}\right) \tilde{\sigma}(E) \omega_{c} \tau$
where $\tilde{\sigma}(E) \equiv q^{2} \frac{D(E)}{W L} \frac{v^{2} \tau}{d}$, cf. Eqs.(4.33) and (4.60) in
Lundstrom, Fundamentals of Carrier Transport, Cambridge (2000).

$$
\left\{i^{-}\right\}=[S]\left\{i^{+}\right\}=\underbrace{[S][M]}_{\equiv[\bar{S}]}\left\{\mu^{+}\right\}
$$

Two-probe conductance,

$$
\begin{aligned}
& Y=\left(q^{2} / h\right)[I-S][M]=\left(q^{2} / h\right)[M-\bar{S}] \quad \text { (Total) } \\
& Y=\left(q^{2} / h\right) 2[I-S][I+S]^{-1}[M]=\left(q^{2} / h\right) 2[M-\bar{S}][M+\bar{S}]^{-1}[M] \text { (Channel only) }
\end{aligned}
$$

Four-probe conductance, $\quad S=\left[\begin{array}{ll}A & C \\ D & B\end{array}\right], \quad P=[A]+[C][I-B]^{-1}[D]$

$$
\begin{aligned}
& \bar{A} \equiv[A]\left[M_{A}\right], \quad \bar{B} \equiv[B]\left[M_{B}\right], \quad \bar{C} \equiv[C]\left[M_{B}\right], \quad \bar{D} \equiv[D]\left[M_{A}\right] \\
& {[\bar{P}] \equiv[P]\left[M_{A}\right]=[\bar{A}]+[\bar{C}]\left[M_{B}-\bar{B}\right]^{-1}[\bar{D}] } \\
\rightarrow \quad & Y_{2 p t}=\frac{i_{A}}{V_{A}}=\left(q^{2} / h\right)[I-P]\left[M_{A}\right]=\left(q^{2} / h\right)\left[M_{A}-\bar{P}\right] \\
\rightarrow \quad & Y_{4 t}=\frac{i_{A}}{V_{B}}=\left(q^{2} / h\right)[I-P] D^{-1}[I-B]\left[M_{B}\right]=\left(q^{2} / h\right)\left[M_{A}-\bar{P}\right] \bar{D}^{-1}\left[M_{B}-\bar{B}\right]
\end{aligned}
$$

Semiclassical density of states is calculated from $\mathrm{E}(\mathrm{k})$ relation by noting that each state occupies a volume $\left((2 \pi / L)^{d}\right.$ in k-space, d being the number of dimensions. Semiclassical dynamics from $\mathrm{E}(\mathrm{r}, \mathrm{k})$ obtained from $\frac{d \vec{x}}{d t}=\frac{1}{\hbar} \vec{\nabla}_{k} E, \frac{d \vec{k}}{d t}=-\frac{1}{\hbar} \vec{\nabla} E$

If $E(\vec{x}, \vec{k})=\sum_{j} \frac{\left(\hbar k_{j}-q A_{j}(\vec{x})\right)^{2}}{2 m}+U(\vec{x}) \quad$ where $q \vec{F}=-\vec{\nabla} U$ and $\vec{B}=\vec{\nabla} x \vec{A}$
Then, $\quad \hbar \vec{v}=\frac{\hbar \vec{k}-q \vec{A}(\vec{x})}{m} \equiv \frac{\hbar \vec{k}^{\prime}}{m}, \quad$ and $\quad \frac{d\left(\hbar \vec{k}^{\prime}\right)}{d t}=q(\vec{F}+\vec{v} \times \vec{B})$

NEGF equations

"Input": H-matrix parameters chosen appropriately to match energy levels or dispersion relations. Σ_{j} for terminal ' \mathbf{j} ' is in general obtained from $\tau_{j} g_{j} \tau_{j}^{+}$where the surface Green function ' g ' is calculated from a recursive relation: $g^{-1}=E I-\alpha-\beta g \beta^{+}$.

$$
\begin{aligned}
& \Gamma_{j}=i\left[\Sigma_{j}-\Sigma_{j}^{+}\right], \Gamma_{s}=i\left[\Sigma_{s}-\Sigma_{s}^{+}\right] \\
& \Sigma \equiv \Sigma_{s}+\sum_{j} \Sigma_{j, \quad \text { and }} \quad \Sigma^{i n} \equiv \Sigma_{s}^{i n}+\sum_{j} \Sigma_{j}^{i n}
\end{aligned}
$$

NEGF equations:

3. $A(E)=i\left[G-G^{+}\right]=G \Gamma G^{+}=G^{+} \Gamma G$
4. $i \hbar I_{o p}=\left[H G^{n}-G^{n} H\right]+\left[\Sigma G^{n}-G^{n} \Sigma^{+}\right]+\left[G \Sigma^{i n}-\Sigma^{i n} G^{+}\right]$

4a. $I_{a \rightarrow b}(E)=\frac{q}{h} i\left[H_{a b} G_{b a}^{n}-G_{a b}^{n} H_{b a}\right] \quad a, b$: Internal Points
4b. $I_{i}(E)=\frac{q}{h}\left(\left(\operatorname{Trace}\left[\Sigma_{i}^{i n} A-\Gamma_{i} G^{n}\right]\right) \quad\right.$ Current/energy at terminal ' \boldsymbol{i} '
$I_{Q, i}=\int d E\left(E-\mu_{i}\right) I_{i}(E) \quad$ Energy absorbed per unit time from terminal ' \boldsymbol{i} '
4c. $I_{i}(E)=\frac{q}{h} \sum_{j} \operatorname{Trace}\left[\Gamma_{i} G \Gamma_{j} G^{+}\right]\left(f_{i}(E)-f_{j}(E)\right)$ (used only if Σ_{s} is zero)
Including spin makes all matrices twice as big since each "grid point" has an up and a down component. Any quantity of interest can be obtained using the corresponding operator. For example, spin density $=\operatorname{Trace}\left[G^{n} \vec{\sigma}\right]$, spin current density $=\operatorname{Trace}\left[I_{o p} \vec{\sigma}\right]$ where $\vec{\sigma}$ is the Pauli spin matrix at the grid point of interest and zero elsewhere.
Pauli spin matrices: $\sigma_{x}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \sigma_{y}=\left[\begin{array}{cc}0 & -i \\ +i & 0\end{array}\right], \sigma_{z}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right], \quad \sigma_{m} \sigma_{n}=\delta_{m n} I+i \sum_{p} \varepsilon_{m n p} \sigma_{p}$
Eigenspinors: $+\hat{n}:\left\{\begin{array}{l}c \\ s\end{array}\right\},-\hat{n}:\left\{\begin{array}{l}-s^{*} \\ c^{*}\end{array}\right\}$, where $c \equiv \cos \frac{\theta}{2} e^{-i \varphi / 2}, s \equiv \sin \frac{\theta}{2} e^{+i \varphi / 2}$
$\Sigma_{j}^{i n}=\Gamma_{j} f_{j}$, but $\Sigma_{s}^{i n}$ cannot in general be written as $\Gamma_{s} f_{s}$, has to be calculated selfconsistently . For elastic scatterers in equilibrium: $\left[\Sigma_{s}\right]=D[G],\left[\Sigma_{s}^{i n}\right]=D\left[G^{n}\right]$
where $D=U_{s} U_{s}^{*}$ describes incoherent processes (or $D_{i j k l}=\left[U_{s}\right]_{i j}\left[U_{s}\right]_{k l}^{*}$).
For inelastic scatterers, with dissipation occurring due to interaction with a reservoir with spectrum $D(+\varepsilon)$ for absorption and $D(-\varepsilon)$ for emission, replace (S) with
$\left[\Sigma_{s}^{i n}(E)\right]=D(+\varepsilon)\left[G^{n}(E-\varepsilon)\right] \quad$ and $\quad\left[\Gamma_{s}(E)\right]=D(+\varepsilon)\left[G^{n}(E-\varepsilon)\right]+D(+\varepsilon)\left[G^{p}(E+\varepsilon)\right]$
(Note that $G^{p}(E)$ is the "hole density" given by $A(E)-G^{n}(E)$)
More generally, replace (S) with (summation over repeated indices is implied)
$\left[\Sigma_{s}^{i n}(E)\right]_{i j}=D_{i k ; j l}(+\varepsilon)\left[G^{n}(E-\varepsilon)\right]_{k l}$ and $\left[\Gamma_{s}(E)\right]_{i j}=D_{i j k l}(+\varepsilon)\left[G^{n}(E-\varepsilon)\right]_{k l}+D_{l k j i}(+\varepsilon)\left[G^{p}(E+\varepsilon)\right]_{k l}$
$\left[\Sigma_{s}(E)\right]_{i j}=\underbrace{[h(E)]_{i j}}_{\begin{array}{c}\text { Hibeert } \\ \text { Transform }\end{array}}-\frac{i}{2}\left[\Gamma_{s}(E)\right]_{i j}$
Scatterers in equilibrium with temperature T, then $\frac{D_{i j k l}(+\varepsilon)}{D_{l k j i}(-\varepsilon)}=e^{-\varepsilon / k_{B} T}$
"Strong correlations" cannot be included in mean field treatment, need to start from multielectron Hamiltonian. For example, for coupled quantum dots.

$$
\begin{aligned}
& \begin{array}{llll}
a & b & \bar{a} & \bar{b}
\end{array} \\
& \boldsymbol{N = 0}: \quad H_{0}=\left[\begin{array}{c}
0 \\
{[0]}
\end{array} \quad \boldsymbol{N}=\mathbf{1}: \quad H_{1}=\left[\begin{array}{cccc}
\varepsilon_{1} & t & 0 & 0 \\
t & \varepsilon_{2} & 0 & 0 \\
0 & 0 & \varepsilon_{1} & t \\
0 & 0 & t & \varepsilon_{2}
\end{array}\right]\right. \\
& \mathbf{N = 2 :} \quad H_{2}=\left[\begin{array}{ccccccc}
a \bar{a} & b \bar{b} & & a \bar{b} & b \bar{a} & a b & \bar{a} \bar{b} \\
2 \varepsilon_{1}+U & 0 & t & t & 0 & 0 \\
0 & 2 \varepsilon_{2}+U & t & t & 0 & 0 \\
t & t & \varepsilon_{1}+\varepsilon_{2} & 0 & 0 & 0 \\
t & t & 0 & \varepsilon_{1}+\varepsilon_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \varepsilon_{1}+\varepsilon_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \varepsilon_{1}+\varepsilon_{2}
\end{array}\right] \\
& b \bar{a} \bar{b} \quad a \bar{a} \bar{b} \quad a b \bar{b} \quad a b \bar{a} \\
& N=3: \quad H_{3}=\left[\begin{array}{ccccc}
\varepsilon_{1}+2 \varepsilon_{2}+U & t & 0 & 0 \\
t & 2 \varepsilon_{1}+\varepsilon_{2}+U & 0 & 0 \\
0 & 0 & \varepsilon_{1}+2 \varepsilon_{2}+U & t \\
0 & 0 & t & 2 \varepsilon_{1}+\varepsilon_{2}+U
\end{array}\right] \quad N=4: \quad \begin{array}{c}
a b \bar{a} \bar{b} \\
H_{4}= \\
\left.2 \varepsilon_{1}+2 \varepsilon_{2}+2 U\right]
\end{array}
\end{aligned}
$$

Law of Equilibrium: $\rho=\frac{1}{Z} \exp \left(-(H-\mu N) / k_{B} T\right)$
Expectation value of any quantity of interest obtained from corresponding operator.
For example, $\langle N\rangle=\operatorname{Trace}\left(\rho N_{o p}\right)$

