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ECE 659: Quantum Transport Spring 2009 
Course website: http://cobweb.ecn.purdue.edu/%7Edatta/659.htm 

Lecture videos posted at https://nanohub.org/resources/6172/ 
 
Fermi function: 

� 

f (E) = 1/(1+ exp((E − µ) /kT)) 

Current  

� 

I =
q
h

dE∫ π γ D(E) ( f1(E) − f2(E))  

Ballistic / diffusive transport: 
  

� 

γ = vz /L  , 

  

� 

I = q dE∫
Dvz

2L
≡ ˜ M (E ) / h


( f + (E) − f −(E))  

  

� 

= q dE∫
D(E)
2L

vzλ
λ + L

( f1(E) − f2(E)) , λ = 2vzτ  

 

Electron density: 

� 

n(z,E) =
D(z,E)
2L

( f +(z,E) + f −(z,E))  

   

� 

df +

dz
=
df −

dz
= −

f + − f −

λ
 , 

� 

λ ≡ 2vzτ  

   

� 

f +(z,E) − f −(z,E) =
λ

λ + L
( f1(E) − f2(E))  

Linear Response:  

� 

I ≈ dE∫ −
∂f
∂E

⎛ 
⎝ 

⎞ 
⎠ 

˜ I (E) , Δµ << kT  

 

� 

˜ I ≈ q
D(E)
2L

vz (µ + − µ−)

� 

= q2
D(E)
2L

vzλ
λ + L

µ1 − µ2

q
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟  

  

  

� 

= q2 D(E)
WL

v 2τ
d

≡ ˜ σ (E )
       

W
λ + L

V   (d=2 for 2D, 3 for 3D) 

 

� 

˜ I = ˜ σ 
W

λ + L
V →  ,   if contact resistance is eliminated  

� 

˜ I = ˜ σ 
W
L

V   

� 

σ zz = dE∫ −
∂f
∂E

⎛ 
⎝ 

⎞ 
⎠ 

˜ σ (E) , σ zx ≈ dE∫ −
∂f
∂E

⎛ 
⎝ 

⎞ 
⎠ 

˜ σ (E)ωcτ  

 

� 

where ˜ σ (E) ≡ q2 D(E)
WL

v 2τ
d

 ,   cf. Eqs.(4.33) and (4.60) in 

 Lundstrom, Fundamentals of Carrier Transport, Cambridge (2000). 
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� 

i−{ } = [S] i+{ } = [S] [M]
≡ [S ]
   

µ +{ } 

Two-probe conductance, 

    

� 

Y = (q2 /h) [I − S] [M]

� 

= (q2 /h) [M − S ]  (Total)  

    

� 

Y = (q2 /h) 2 [I − S] [I + S]−1 [M] 

� 

= (q2 /h) 2 [M − S ] [M + S ]−1 [M](Channel only) 

Four-probe conductance,   

� 

S =
A C
D B
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  , 

� 

P = [A] + [C] [I − B] −1 [D] 

  

� 

A ≡ [A][MA ], B ≡ [B][MB ]

� 

, C ≡ [C][MB ], D ≡ [D][MA ] 

   

� 

[P ] ≡ [P][MA ] = [A ] + [C ] [MB − B ] −1 [D ] 

 

� 

→ Y2pt =
iA

VA

= (q2 /h) [I − P] [MA ] = (q2 /h) [MA − P ]   

 

� 

→ Y4 t =
iA
VB

= (q2 /h) [I − P]D−1 [I − B][MB ]  

� 

= (q2 /h) [MA − P ]D −1 [MB − B ] 

 

Semiclassical density of states is calculated from E(k) relation by noting that each state occupies 

a volume (

� 

(2π /L)d  in k-space, d being the number of dimensions. Semiclassical dynamics from 

E(r,k) obtained from  
  

� 

d  x 
dt

=
1


 
∇ k E , 

  

� 

d
 
k 

dt
= −

1


 
∇ E  

If  
  

� 

E(  x ,
 
k ) =

j
∑ (k j − qA j (

 x ))2

2m
+ U( x )  where   

� 

q
 
F = −

 
∇ U  and  

� 

 
B =
 
∇ x
 
A  

Then,   
  

� 


 v =

 
k − q

 
A (  x )

m
≡

 
k '

m
, and 

  

� 

d(
 
k ')

dt
= q(
 
F +  v x

 
B )   

 

NEGF equations  

"Input": H-matrix parameters chosen appropriately to match energy levels or dispersion 

relations. 

� 

Σ j  for terminal 'j' is in general obtained from 

� 

τ j g j τ j
+
 where the surface Green 

function ‘g’ is calculated from a recursive relation: 

� 

g −1 = EI −α −βgβ + . 

� 

Γ j = i[Σ j − Σ j
+] , 

� 

Γs = i[Σs − Σs
+] 

� 

Σ ≡ Σs +
j
∑ Σ j , and 

� 

Σin ≡ Σs
in +

j
∑ Σ j

in
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NEGF equations: 

 1.

� 

G(E) = [EI −H − Σ1 − Σ2 − Σs]
−1 

 2. 

� 

[Gn (E)]= [GΣinG+] 

3.

� 

A(E) = i[G −G+] = GΓG+ = G+ΓG   

4. 
  

� 

i Iop = [HGn −GnH]+ [ΣGn −GnΣ+]+ [GΣin − ΣinG+] 

4a. 

� 

Ia→b (E) = q
h
i [HabG ba

n −G ab
n Hba ] a, b: Internal Points 

4b. 

� 

Ii(E) = q
h
( (Trace[Σi

in A −ΓiG
n ])       Current/energy at terminal 'i'  

� 

IQ, i = dE∫ (E − µ i) Ii(E)       Energy absorbed per unit time from terminal 'i'  

4c. 

� 

Ii(E) = q
h j
∑ Trace[ΓiGΓ jG

+]( fi(E) − f j (E))  (used only if 

� 

Σ s is zero) 

Including spin makes all matrices twice as big since each "grid point" has an up and a down 

component. Any quantity of interest can be obtained using the corresponding operator. For 

example, spin density =   

� 

Trace[Gn  σ ], spin current density =  
  

� 

Trace[Iop
 
σ ] where   

� 

 
σ  is the Pauli 

spin matrix at the grid point of interest and zero elsewhere. 

Pauli spin matrices: 

� 

σ x =
0 1
1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , 

� 

σ y =
0 − i
+i 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , 

� 

σ z =
1 0
0 −1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
, 

� 

σ mσ n = δmnI + i εmnpσ p
p
∑

 

Eigenspinors: 

� 

+ ˆ n :
c
s
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

, 

� 

− ˆ n :
−s*
c *
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

, 
 
where 

� 

c ≡ cosθ
2
e−iϕ / 2, 

� 

s ≡ sinθ
2
e+iϕ / 2

 

 

� 

Σ j
in = Γ j f j  , but 

� 

Σs
in  cannot in general be written as 

� 

Γs fs , has to be calculated self-

consistently .
 
For elastic scatterers in equilibrium:

� 

Σs[ ] = D G[ ] , 

� 

Σ s
in[ ] = D Gn[ ]  (S)

 
where 

� 

D = Us Us
* describes incoherent processes (or 

� 

Dijkl = Us[ ]ij Us[ ]kl
* ) . 

For inelastic scatterers, with dissipation occurring due to interaction with a reservoir with 

spectrum 

� 

D(+ε) for absorption and 

� 

D(−ε)  for emission, replace (S) with 

  H    
 

 

� 

Σ2

� 

µ1

� 

µ2
 
 

� 

Σs

 
 
1Σ



 4 

� 

Σ s
in (E)[ ] = D(+ε) Gn (E − ε)[ ] and 

� 

Γs(E)[ ] = D(+ε) Gn (E − ε)[ ] + D(+ε) Gp (E + ε)[ ] 

(Note that 

� 

Gp (E)  is the "hole density" given by 

� 

A(E) −Gn (E)) 

More generally, replace (S) with (summation over repeated indices is implied) 

� 

Σ s
in (E)[ ]ij = Dik; jl (+ε) Gn (E − ε)[ ]kl  and 

� 

Γs(E)[ ]ij = Dijkl (+ε) Gn (E − ε)[ ]kl + Dlkji(+ε) Gp (E + ε)[ ]kl  
 

 

Scatterers in equilibrium with temperature T, then 

� 

Dijkl (+ε)
Dlkji(−ε)

= e− ε / kBT  

"Strong correlations" cannot be included in mean field treatment, need to start from  

multielectron Hamiltonian. For example, for coupled quantum dots. 

N=0:   

� 

0
H0 = 0[ ]  N=1: 

� 

a b a b 

H1 =

ε1 t 0 0
t ε2 0 0
0 0 ε1 t
0 0 t ε2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

N=2: 

� 

aa bb ab ba ab a b 

H2 =

2ε1 + U 0 t t 0 0
0 2ε2 + U t t 0 0

t t ε1 + ε2 0 0 0
t t 0 ε1 + ε2 0 0
0 0 0 0 ε1 + ε2 0
0 0 0 0 0 ε1 + ε2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

 

N=3: 

� 

ba b aa b abb aba 

H3 =

ε1 + 2ε2 + U t 0 0
t 2ε1 + ε2 + U 0 0
0 0 ε1 + 2ε2 + U t
0 0 t 2ε1 + ε2 + U

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 N=4:  

� 

aba b 

H4 = 2ε1 + 2ε2 + 2U[ ] 

 

Law of Equilibrium: 

� 

ρ =
1
Z
exp (−(H − µN) /kBT)  

Expectation value of any quantity of interest obtained from corresponding operator. 

For example,  

� 

N = Trace(ρNop ) 

  

� 

[Σ s(E)]ij = [h(E)]ij
Hilbert

Transform

     
−

i
2
Γs(E)[ ]ij


