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Review
00:05

• We’ve been studying the model of a 
nanotransistor drawn on the left. For a one 
level conduction we’ve been using these 
equations to get the current.

• In general one deals with a Hamiltonian 
matrix which gives the energy levels of a 
device and the Sigma matrices which 
describe the effect of the coupling to the 
contacts. To solve the more general problem 
we’ve derived the matrix version of the above 
equations.
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Matrix Equations
07:50
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• We can rewrite current as: 
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Ballistic Wire
17:15

• Note that the current for a ballistic wire 
can be obtained from the general formula 
with the transmission of 1. So ballistic wire 
is the one for which T=1.
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Wire with a Delta Function 
Potential Scatterer

22:48

• What if there is a delta function potential scatterer in the wire? There is another method to 
calculate the current. In this method, we view electrons as waves incident on the delta 
function potential (located at x=0) from left (right). We then use the Schrödinger equation to 
calculate the transmission amplitude. Transmission probability is the squared module of 
transmission amplitude. Although this method gives us good physical insight about the 
problem, it won’t be convenient for real practical problems.
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Multiple Modes
30:14

• If we have a wire with a cross section that 
allows multiple number of modes we have:
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Landauer Formula
32:45
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• Consider the case where a small drain voltage has been applied to contact 2. 



Where is the heat 
dissipated?

40:27

• So what happens if we make a wire ballistic? Will the resistance go to 0? Are we NOT 
going to have any dissipation? These issues caused a lot of controversy in the 1980’s. Today 
we know that what the Landauer formula predicts is correct. The maximum conductance is:

• If this correct, then there is a minimum resistance and that should cause heating. But since 
the conductor is ballistic, resistance and the associated heating cannot be in the channel. So 
where is the heat dissipation?
• As the figure below shows once an electron gets onto to the drain contact it looses its 
energy and relaxes down whereby it generates heat. On the other hand the hole left in drain 
floats up to the top. Describing these processes are very difficult. We’ve bypassed them by 
stating that certain forces keep holes and electrons in equilibrium with the Fermi levels in the 
contacts.
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