ECE498AL

Lecture 4: CUDA Threads
— Part 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

CUDA Thread Block

« All threads in a block execute the same
kernel program (SPMD)

« Programmer declares block: CUDA Thread Block
— Block size 1 to 512 concurrent threads
— Block shape 1D, 2D, or 3D Thread Id #:
— Block dimensions in threads 0123.
« Threads have thread id numbers within block ?}?}2}?}9}?
— Thread program uses thread id to select

work and address shared data Thread program

e Threads in the same block share data and
synchronize while doing their share of the
work

 Threads in different blocks cannot cooperate

— Each block can execute in any order relative
to other blocs!

Courtesy: John Nickolls, NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 2
ECE498AL, University of Illinois, Urbana-Champaign

Transparent Scalabllity

 Hardware Is free to assigns blocks to any
processor at any time

— A kernel scales across any number of
parallel processors

Block O Block 1

/ Block 2 Block 3 \
Block 0 Block 1 Block 4 Block 5
Block 6 Block 7 Block O | Block 1l Block2 | Block 3

Block 2 Block 3 time
Block 4 Block5 Block6 Block7

Block 4 | Block 5

Each block can execute in any order relative to
Block 6 Block 7 other blocks.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

G80 CUDA mode — A Review

* Processors execute computing threads
 New operating mode/HW interface for computing

Host

!

Input Assembler

*

A Y v v A
L L I L R TN O
I | | HR T O O I
I | | NN O O O
| NN HR T O | I I
Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

rocure]] rosure] FJ§{Trosure [TTvocure [[T [rocure T revore YT rocure [rense

II &/ LUVIV INTIIIVINV II/IY UV VvV vvu, Lvvi oLuvuvv

ECE498AL, University of III|n0|s Urbana -Champaign

G80 Example: Executing Thread Blocks

t0OtLt2 ...tm | ‘e,
NNNNNNNNNN

NN

H- SMO SM1 tI0t1t2...tm H

Blocks

(<4

> D))

>>>))

H

Flexible resource allocation - blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

Threads are assigned to Streaming
Multiprocessors in block granularity

Up to 8 blocks to each SM as
resource allows

SM in G80 can take up to 768 threads
Could be 256 (threads/block) * 3

Or 128 (threads/block) * 6 blocks, etc.

Threads run concurrently

SM maintains thread/block id #s

SM manages/schedules thread
execution 5

G80 Example: Thread Scheduling

EaCh BlOCk iS eXECUted as — Block 1 Warps Block 2 Warps — Block 1 Warps
. | .
32-thread Warps vue.et| || [eae e QUL !
— An implementation decision, Y > S
not part of the CUDA — | &£ S |4 | £ S | - S
programming model
— Warps are scheduling units Streaming Multiprocessor
in SM [nstructionit]
If 3 bIOCkS are assigned to an Instruction Fetch/Dispatch
SM and each block has 256 Shared Memory
threads, how many Warps are P
there in an SM? =
— Each Block is divided into SFU SFU
256/32 = 8 Warps = 1l . 1]

— There are 8 * 3 = 24 Warps

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

G80 Example: Thread Scheduling
(Cont.)

« SM implements zero-overhead warp scheduling
— At any time, only one of the warps is executed by SM

— Warps whose next instruction has its operands ready for
consumption are eligible for execution

— Eligible Warps are selected for execution on a prioritized
scheduling policy

— All threads in a warp execute the same instruction when selected

TB1, W1 stall

—TB2, W1 stall———TB3, W2 stall———|
Y TB2 | TB3 | TB3 | TB2 | TB1 | TB1 | TB1 | TBI
: L . CO W[w2 A Wi W2 | W3 | W2
Instruction: | 112 3 4 5 6|1 2|1 2|1 2|3 4|7 8|1 2|1 2|3 4

—Time-» TB = Thread Block, W = Warp

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 7
ECE498AL, University of Illinois, Urbana-Champaign

G80 Block Granularity Considerations

* For Matrix Multiplication using multiple blocks, should |
use 8X8, 16X16 or 32X32 blocks?

— For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

— For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

— For 32X32, we have 1024 threads per Block. Not even one can fit
Into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 8
ECE498AL, University of Illinois, Urbana-Champaign

More Detalls of APl Features

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

Application Programming Interface

« The APl is an extension to the C programming
language

e |t consists of:

— Language extensions
 To target portions of the code for execution on the device

— A runtime library split into:

« A common component providing built-in vector types and a
subset of the C runtime library in both host and device
codes

A host component to control and access one or more
devices from the host

« A device component providing device-specific functions

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 10
ECE498AL, University of Illinois, Urbana-Champaign

Language Extensions:
Built-in Variables

e dim3 gridDim;
— Dimensions of the grid in blocks (gridDim.z
unused)

e dim3 blockDim;

— Dimensions of the block in threads
e dim3 blockldx;

— Block index within the grid
e dim3 threadldx;

— Thread index within the block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

11

Common Runtime Component:

Mathematical Functions

e pow, sSgrt, cbrt, hypot

e exp, exp2, expml

 log, 1og2, 10910, loglp

e sinN, cos, tan, asin, acos, atan, atan?
e sinh, cosh, tanh, asinh, acosh, atanh
e« ceiul, floor, trunc, round

 Etc.

— When executed on the host, a given function uses
the C runtime implementation if available

— These functions are only supported for scalar types,
not vector types

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

12

Device Runtime Component:

Mathematical Functions

e« Some mathematical functions (e.g. sin(x))
have a less accurate, but faster device-only
version (e.g. sin(x))

— __ pow
— log, log2, 1o0gl0
— exp

— __SiIn, cos, tan

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 13
ECE498AL, University of Illinois, Urbana-Champaign

Host Runtime Component

* Provides functions to deal with:
— Device management (including multi-device systems)
— Memory management
— Error handling

e |nitializes the first time a runtime function iIs called

A host thread can invoke device code on only one
device

— Multiple host threads required to run on multiple
devices

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 14
ECE498AL, University of Illinois, Urbana-Champaign

Device Runtime Component:
Synchronization Function

e void _ syncthreads();

e Synchronizes all threads in a block

 Once all threads have reached this point,
execution resumes normally

e Used to avoid RAW / WAR / WAW hazards
when accessing shared or global memory

« Allowed in conditional constructs only if the
conditional i1s uniform across the entire thread
block

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

15

