ECE 498AL

Programming Massively Parallel Processors

Lecture 5: CUDA Memories
G80 Implementation of CUDA Memories

- Each thread can:
 - Read/write per-thread \textit{registers}
 - Read/write per-thread local memory
 - Read/write per-block \textit{shared memory}
 - Read/write per-grid \textit{global memory}
 - Read/only per-grid \textit{constant memory}
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local int LocalVar;</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **__device__** is optional when used with **__local__, __shared__, or __constant__**

- **Automatic variables** without any qualifier reside in a **register**
 - Except arrays that reside in local memory
Where to Declare Variables?

Can host access it?

- Global
- Constant

Yes

Outside of any Function

No

In the kernel

- Register (automatic)
- Shared
- Local
Variable Type Restrictions

- **Pointers** can only point to memory allocated or declared in global memory:
 - Allocated in the host and passed to the kernel:
    ```c
    __global__ void KernelFunc(float* ptr)
    ```
 - Obtained as the address of a global variable:
    ```c
    float* ptr = &GlobalVar;
    ```
A Common Programming Strategy

- Global memory resides in device memory (DRAM) - much slower access than shared memory.
- So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 - Partition data into subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism
 - Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 - Copying results from shared memory to global memory
A Common Programming Strategy (Cont.)

- Constant memory also resides in device memory (DRAM) - much slower access than shared memory
 - But… cached!
 - Highly efficient access for read-only data

- Carefully divide data according to access patterns
 - R/Only \rightarrow constant memory (very fast if in cache)
 - R/W shared within Block \rightarrow shared memory (very fast)
 - R/W within each thread \rightarrow registers (very fast)
 - R/W inputs/results \rightarrow global memory (very slow)

For texture memory usage, see NVIDIA document.
GPU Atomic Integer Operations

• Atomic operations on integers in global memory:
 – Associative operations on signed/unsigned ints
 – add, sub, min, max, ...
 – and, or, xor
 – Increment, decrement
 – Exchange, compare and swap

• Requires hardware with compute capability 1.1 and above.
Matrix Multiplication using
Shared Memory
Review: Matrix Multiplication Kernel using Multiple Blocks

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column index of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

    Pd[Row*Width+Col] = Pvalue;
}
```
How about performance on G80?

- All threads access global memory for their input matrix elements
 - Two memory accesses (8 bytes) per floating point multiply-add
 - 4B/s of memory bandwidth/FLOPS
 - 4*346.5 = 1386 GB/s required to achieve peak FLOP rating
 - 86.4 GB/s limits the code at 21.6 GFLOPS

- The actual code runs at about 15 GFLOPS

- Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS
Idea: Use Shared Memory to reuse global memory data

• Each input element is read by Width threads.
• Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
 – Tiled algorithms
Tiled Multiply

- Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd
A Small Example
Every Md and Nd Element is used exactly twice in generating a 2X2 tile of \(P \)

<table>
<thead>
<tr>
<th>Access order</th>
<th>(P_{0,0}) thread(_{0,0})</th>
<th>(P_{1,0}) thread(_{1,0})</th>
<th>(P_{0,1}) thread(_{0,1})</th>
<th>(P_{1,1}) thread(_{1,1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{0,0}). N(_{0,0})</td>
<td>(M_{0,0}). N(_{1,0})</td>
<td>(M_{0,1}). N(_{0,0})</td>
<td>(M_{0,1}). N(_{1,0})</td>
<td></td>
</tr>
<tr>
<td>(M_{1,0}). N(_{0,1})</td>
<td>(M_{1,0}). N(_{1,1})</td>
<td>(M_{1,1}). N(_{0,1})</td>
<td>(M_{1,1}). N(_{1,1})</td>
<td></td>
</tr>
<tr>
<td>(M_{2,0}). N(_{0,2})</td>
<td>(M_{2,0}). N(_{1,2})</td>
<td>(M_{2,1}). N(_{0,2})</td>
<td>(M_{2,1}). N(_{1,2})</td>
<td></td>
</tr>
<tr>
<td>(M_{3,0}). N(_{0,3})</td>
<td>(M_{3,0}). N(_{1,3})</td>
<td>(M_{3,1}). N(_{0,3})</td>
<td>(M_{3,1}). N(_{1,3})</td>
<td></td>
</tr>
</tbody>
</table>
Breaking Md and Nd into Tiles

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign
Each phase of a Thread Block uses one tile from Md and one from Nd

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>0,0</sub></td>
<td>Md<sub>0,0</sub></td>
</tr>
<tr>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Mds<sub>0,0</sub></td>
<td>Nds<sub>0,0</sub></td>
</tr>
<tr>
<td>T<sub>1,0</sub></td>
<td>Md<sub>1,0</sub></td>
</tr>
<tr>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Mds<sub>1,0</sub></td>
<td>Nds<sub>1,0</sub></td>
</tr>
<tr>
<td>T<sub>0,1</sub></td>
<td>Md<sub>0,1</sub></td>
</tr>
<tr>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Mds<sub>0,1</sub></td>
<td>Nds<sub>0,1</sub></td>
</tr>
<tr>
<td>T<sub>1,1</sub></td>
<td>Md<sub>1,1</sub></td>
</tr>
<tr>
<td></td>
<td>↓</td>
</tr>
<tr>
<td>Mds<sub>1,1</sub></td>
<td>Nds<sub>1,1</sub></td>
</tr>
</tbody>
</table>
First-order Size Considerations in G80

- Each **thread block** should have many threads
 - TILE_WIDTH of 16 gives $16 \times 16 = 256$ threads

- There should be many thread blocks
 - A 1024*1024 Pd gives $64 \times 64 = 4096$ Thread Blocks

- Each thread block perform $2 \times 256 = 512$ float loads from global memory for $256 \times (2 \times 16) = 8,192$ mul/add operations.
 - Memory bandwidth no longer a limiting factor
CUDA Code – Kernel Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,
 Width / TILE_WIDTH);
Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Collaborative loading of Md and Nd tiles into shared memory
9.  Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
11. __syncthreads();

11. for (int k = 0; k < TILE_WIDTH; ++k)
12.  Pvalue += Mds[ty][k] * Nds[k][tx];
13. __syncthreads();
14. }
13. Pd[Row*Width+Col] = Pvalue;
}
```

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana Champaign
Tiled Multiply

- Each block computes one square sub-matrix $P_{d_{sub}}$ of size $TILE_WIDTH$
- Each thread computes one element of $P_{d_{sub}}$
G80 Shared Memory and Threading

• Each SM in G80 has 16KB shared memory
 – SM size is implementation dependent!
 – For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 – Can potentially have up to 8 Thread Blocks actively executing
 • This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 – The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per thread block, allowing only up to two thread blocks active at the same time
• Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 – The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS!
Tiling Size Effects

![Bar chart showing tiling size effects with GFLOPS on the y-axis and different tile sizes on the x-axis. The chart compares tiled only, tiled & unrolled, and not tiled configurations.](chart.png)
Summary - Typical Structure of a CUDA Program

- Define global variables and constants
- Define shared variables
- Define local variables
- Define parameters

repeat

as needed