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« Recall, given E = &, = h, we Taylor expand h, about the

conduction points
S\ | o 2z | Oy
ho(k)’vkx{ak +(ky‘ Ab{ak}
Y 0274

’ :|(0’2%b)

» Expanding and solving
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* Finally we get

where B, =k, ——

3b
* The above
approximation describes
guite well the behavior of
semiconducting and
conducting nanotubes.
This, of course, is true
because all the “action”
(electrical and optical
effects) tend to occur at
or close to the
conduction point.
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This approximation works
quit well and will result in
these tangent lines close to
the conduction valleys. This, of
course, is true because all the
“action” (electrical and optical
effects) tend to occur at or close
to the conduction point.



* The periodic boundary conditions along the
circumference requires thatk -C = 27V
wherd is an integer.

C

Zigzag nanotube

« A fold in the §/ direction has the
circumferential vector € = 2mb Y,
where m is an integer, and the resulting
subbands look something like...

K, -(2bm) = 270
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» A general energy
expression for a y fold,
zigzag, nanotube is:

E (k)=e+atk’+k,’ Ve gmggjf

V=
where k, = 1
3b

» A nanotube will only conduct if one of
its subbands pass through the six
corners of the Brillouin Zone. The
condition for conduction is

27N 27z V_l

omb  3b ﬁ_g

Therefore only if m is a multiple of 3 Semi-Conducting
then conduction will in a zigzag Nanotube m = 3v
nanotube.
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L » The quantity above represents half of the
/ and gap shown in the figure given that kx=0.

2
27 ( 3v at 4
E,(ky)=¢=% at\/kx2 + (— 1]} E =—9 « d: diameter of nanotube

 How can we estimate the semi-conducting
band gap? E — 28.01:
* This can be done by finding the smallest g d

value of the second term in the equation

above: s 272(3V—2mj 2
[ “ 3 2m
2(1.4x10°m)2.5eV)

is minimized if: 3y —2m =1 (28><10‘1°m)




* As long as we have a sheet of a material, the
confinement is only in 1 dimension. Then all k
values on the kx, ky plane are allowed. The E-k
plot will then be 3 dimensional because at each
point in the k plane, there is a corresponding
energy value.

» The imposition of periodic boundary conditions
by folding a sheet of graphite to a carbon
nanotube -for example a zigzag nanotube-
makes only certain values of “ky” acceptable.
These are the horizontal lines shown in the
figure.

* Increasing the diameter of nanotube will make
the lines closer to each other and decreasing
the diameter will make the lines further apart. In
the limit of very big diameters, we get the same
thing as a sheet of graphite: the acceptable
lines get really close to each other and it starts
to look like a bulk piece of graphite sheet
namely: Graphene.




« How do we look at this process of A : iodic bound ditions for L
dimensional confinement in a general || >stiming periodic boundary conditions 1ot L.,

manner? Where does the carbon | weget k, = (v2.7) /L, and our E-k function is
E, (K ky) = E(Ky, Ky, K=@ 7v)L,)

- Consider the well known bulk solid )| (where Vs an integer)

( « Similarly, constraining along the k direction
' | results in a quantum wire

Bulk Solid
\_ |
without any constraints, very long, :
wide and deep. It has a general E-k
behavior expressed by the function

Quantum Wire

J

« For the quantum wire we have k= (v2 7L,
| and the E-k function
E(Ky, Ky» k)

V'2r
« If we constrain the bulk solid in one | E,. (kx): E|k,.k, = L K, =—

L

' ' y z
direction, say k;, to a compargbly H Note: a carbon nanotube is really, in the general sense, a
short length, L,, we get what is known

form of quantum wire!
as a quantum well ... :




* Finally, confinement in the x-direction as well
leads to a quantum dot
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*The quantum dot includes k, = (v 2 7)/L,
such that the E-k behavior is given by

V"2 V27 V2
Evv.v=E kx: ’ky: ’kz:—
L, L, L,
The quantum energy levels are discretized in the
same way as those of an atom and so quantum

dots are often referred to as artificial atoms

* One important question, when do
constraints begin to lead to
guantization of the bandstructure?
Essentially, quantization depends
on the thermal energy kgT.
Because the thermal energy tends
to smooth out the difference
between energy levels, the
discretization corresponding to

Kyyiz = (02 7)IL,,, must be less
than or comparable to kgT to
experimentally (and hence
physically) matter.

Note: this is often the motivation for
conducting experiments at very low
temperatures
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