ECE-656: Fall 2009

Lecture 4: Density of States/ Density of Modes

Professor Mark Lundstrom
Electrical and Computer Engineering Purdue University, West Lafayette, IN USA

Datta-Landauer Approach

$$
\begin{aligned}
& I=\frac{2 q}{h} \int \gamma \pi \frac{D(E)}{2}\left(f_{1}-f_{2}\right) d E \\
& I=\frac{2 q}{h} \int T(E) M(E)\left(f_{1}-f_{2}\right) d E
\end{aligned}
$$

Key parameters:

1) Density-of-states (for carrier density)
2) Density of modes (for current)
3) Transmission (to describe scattering)

k-space vs. energy-space

$$
N(k) d^{3} k=\frac{\Omega}{4 \pi^{3}} d^{3} k=D(E) d E
$$

$N(k)$: independent of bandstructure
$D(E)$: depends on $E(k)$
$N(k)$ and $D(E)$ are proportional to the volume, Ω, but it is common to express $D(E)$ per unit energy and per unit volume. We will use the same symbol in both cases, but the units will be clear from the context.

outline

1) Density of states

2) Example: graphene
3) Density of modes
4) Example: graphene
5) Summary

example: 1D DOS

$$
v(k)=\frac{1}{\mathrm{~h}} \frac{d E}{d k}
$$

$$
D_{1 D}(E)=\frac{2}{\pi \mathrm{~h}} \frac{1}{v}
$$

example: 1D DOS for parabolic bands

$$
D_{1 D}(E)=\frac{2}{\pi \mathrm{~h}} \frac{1}{v}
$$

$$
\text { independent of } E(k)
$$

$$
D_{1 D}(E)=\frac{1}{\pi \mathrm{~h}} \sqrt{\frac{2 m^{*}}{E}}
$$

parabolic $E(k)$

$$
E(k)=\frac{\mathrm{h}^{2} k^{2}}{2 m^{*}}
$$

$$
\frac{1}{\mathrm{~h}} \frac{d E}{d k}=v=\sqrt{\frac{2 E}{m^{*}}}
$$

density of states in a nanowire

$$
E=\varepsilon_{i}+\frac{\mathrm{h}^{2} k^{2}}{2 m_{i}^{*}}
$$

2D density of states

density of states in a film

$$
D_{2 D}^{i}(E)=g_{V} \frac{m_{i}^{*}}{\pi \mathrm{~h}^{2}}
$$

effective mass vs. tight binding

$\mathrm{sp}^{3} \mathrm{~s}^{*} \mathrm{~d}^{5}$ tight binding calculation by
Yang Liu, Purdue University, 2007

effective mass vs. tight binding

near subband edge

well above subband edge

$s p^{3} s^{\star} d^{5}$ tight binding calculation by Yang Liu, Purdue University, 2007

exercise

$$
E=\varepsilon_{1}+E\left(k_{\|}\right)
$$

$$
\begin{aligned}
& E_{k}\left(1+\alpha E_{k}\right)+\frac{\mathrm{h}^{2} k_{\|}^{2}}{2 m^{*}(0)} \\
& D_{2 D}=?
\end{aligned}
$$

alternative approach

$$
\begin{aligned}
& D_{1 D}(E)=\frac{1}{L} \sum_{k} \delta\left(E-E_{k}\right) \\
& D_{2 D}(E)=\frac{1}{A} \sum_{\mathbf{k}} \delta\left(E-E_{\mathbf{k}}\right) \\
& D_{3 D}(E)=\frac{1}{\Omega} \sum_{\mathbf{k}} \delta\left(E-E_{\mathbf{k}}\right)
\end{aligned}
$$

proof

in k-space, we know:

$$
\begin{aligned}
& n_{L}=\frac{1}{L} \sum_{k} f_{0}\left(E_{k}\right) \\
& n_{L}=\int f_{0}(E) D_{1 D}(E) d E \\
& n_{L}=\int f_{0}(E) \frac{1}{L} \sum_{k} \delta\left(E-E_{k}\right) d E \\
& n_{L}=\frac{1}{L} \sum_{k} \int f_{0}(E) \delta\left(E-E_{k}\right) d E \\
& n_{L}=\frac{1}{L} \sum_{k} f_{0}\left(E_{k}\right)
\end{aligned}
$$

Lundstrom ECE-656 F09

interpretation

\# of states

$$
\int_{E_{1}}^{E_{1}+d E} D_{1 D}(E) d E=\int_{E_{1}}^{E_{1}+d E} \frac{1}{L} \sum_{k} \delta\left(E-E_{k}\right) d E=\frac{1}{L} \sum_{k} \int_{E_{1}}^{E_{1}+d E} \delta\left(E-E_{k}\right) d E
$$

counts the states between E and $E+d E$

outline

1) Density of states

2) Example: graphene
3) Density of modes
4) Example: graphene
5) Summary

example: DOS for graphene

$$
D(E)=\frac{1}{A} \sum_{k_{\|}} \delta\left(E-E_{k_{\|}}\right)=\frac{1}{A} \frac{A}{\left(2 \pi^{2}\right)} \times 2 \int_{0}^{\infty} \delta\left(E-E_{k_{\|}}\right) 2 \pi k_{\| \mid} d k_{\|}
$$

$$
E_{k_{1}}=\mathrm{h} v_{F} k_{\| \|} \quad d E_{k_{1}}=\mathrm{h} v_{F} d k_{\|} \quad k_{\|} d k_{\| \|}=E_{k_{1}} d E_{k_{1}} / \mathrm{h}^{2} v_{F}^{2}
$$

$$
D(E)=\frac{g_{V}}{\pi \mathrm{~h}^{2} v_{F}^{2}} \int_{0}^{\infty} \delta\left(E-E_{k_{1}}\right) E_{k_{k_{1}}} d E_{k_{k_{1}}}
$$

$$
D(E)=\frac{2 E}{\pi \mathrm{~h}^{2} v_{F}^{2}} \quad E>0
$$

outline

1) Density of states

2) Example: graphene
3) Density of modes
4) Example: graphene
5) Summary

definitions

$$
I=\left\{\frac{2 q^{2}}{h} \int T(E) M(E)\left(-\partial f_{0} / \partial E\right) d E\right\} V
$$

(near-equilibrium)

$$
\begin{gathered}
M(E)=\gamma \pi \frac{D(E)}{2} \quad \gamma(E)=\frac{\mathrm{h}}{\tau(E)} \\
T(E)=\frac{\lambda(E)}{\lambda(E)+L}
\end{gathered}
$$

DOS vs. DOM

$$
\begin{aligned}
N & =\int D(E) f_{0}(E) d E \\
G & =\int M(E)\left(-\partial f_{0} / \partial E\right) d E \quad(T(E)=1)
\end{aligned}
$$

Density of states determines the carrier density and density of modes determines the conductance.

$$
\begin{array}{lll}
\text { 1D : } & D(E) \propto L & M(E) \propto 1 \\
\text { 2D : } & D(E) \propto A & M(E) \propto W \\
\text { 3D }: & D(E) \propto \Omega & M(E) \propto A
\end{array}
$$

modes (conducting channels) in 2D

$$
M_{2 D}(E)=\gamma \pi D_{2 D}(E) / 2=?
$$

$$
\psi(x, y) \propto e^{i k_{x} x} \sin k_{y} y
$$

We will assume that W is wide (small W, is a '1D' nanowire).

$$
k_{y}=m \pi / W \quad m=1,2, \ldots
$$

$$
\tan \theta=k_{y} / k_{x}
$$

modes (conducting channels) in 2D

$$
M_{2 D}(E)=\gamma \pi D_{2 D}(E) / 2 \quad D_{2 D}(E)=A\left(m^{*} / \pi \mathrm{h}^{2}\right) \quad\left(E(k)=\mathrm{h}^{2} k^{2} / 2 m^{*}\right)
$$

$$
\gamma=\mathrm{h} /\langle\tau\rangle
$$

$$
\langle\cos \theta\rangle=\frac{\int_{-\pi / 2}^{+\pi / 2} \cos \theta d \theta}{\pi}
$$

$$
\gamma=\frac{h v}{L}\left(\frac{2}{\pi}\right)
$$

$$
\gamma=\frac{\mathrm{h}}{L /\left\langle v_{x}\right\rangle}=\frac{\mathrm{h} v}{L}\langle\cos \theta\rangle
$$

$\langle\cos \theta\rangle=\frac{2}{\pi}$
Lundstrom ECE-656 F09

$$
v=\sqrt{\frac{2\left(E-\varepsilon_{1}\right)}{m^{*}}}
$$

modes in 2D

$$
M(E)=\gamma(E) \pi D_{2 D}(E) / 2
$$

But how do we interpret this result physically?

$$
\gamma(E)=\frac{\mathrm{h} \nu}{L}\left(\frac{2}{\pi}\right)=\frac{\mathrm{h} \sqrt{2\left(E-\varepsilon_{1}\right) / m^{*}}}{L}\left(\frac{2}{\pi}\right)
$$

$D_{2 D}(E)=\frac{m{ }^{*}}{\pi \mathrm{~h}^{2}} W L$
$\gamma \pi D_{2 D} / 2=\left(\frac{\mathrm{h}}{L} \sqrt{\frac{2\left(E-\varepsilon_{1}\right)}{m^{*}}} \frac{2}{\pi}\right) \pi\left(\frac{m^{*}}{2 \pi \mathrm{~h}^{2}} W L\right)$

physical interpretation

$$
\begin{aligned}
& E(k)=\varepsilon_{1}+\frac{\mathrm{h}^{2} k^{2}}{2 m^{*}} \\
& k(E)=\frac{\sqrt{2 m^{*}\left(E-\varepsilon_{1}\right)}}{\mathrm{h}} \\
& k(E)=\frac{2 \pi}{\lambda_{B}(E)} \\
& \frac{\sqrt{2 m^{*}\left(E-\varepsilon_{1}\right)}}{\pi \mathrm{h}}=\frac{1}{\left(\lambda_{B}(E) / 2\right)}
\end{aligned}
$$

But how do we interpret this result physically?

$$
\begin{aligned}
& M_{2 D}(E)=W \frac{\sqrt{2 m^{*}\left(E-\varepsilon_{1}\right)}}{\pi \mathrm{h}} \\
& M_{2 D}(E)=\frac{W}{\lambda_{B}(E) / 2}
\end{aligned}
$$

waveguide modes

Assume that there is one subband associated with confinement in the zdirection. Many subbands associated with confinement in the y-direction

$$
\psi(x, y) \propto e^{i k_{x} x} \sin k_{y} y
$$

lowest mode

$$
k_{y}=m \pi / W \quad m=1,2, \ldots
$$

$M=\#$ of electron half wavelengths that fit into W.

DOS vs. modes in 2D

DOS vs. modes

$$
\begin{aligned}
& D_{2 D}(E)=\frac{m^{*}}{\pi \mathrm{~h}^{2}} \\
& M_{2 D}(E)=\frac{W \sqrt{2 m^{*}\left[E-\varepsilon_{i}(0)\right]}}{\pi \mathrm{h}} \\
& \frac{M_{2 D}(E)}{D_{2 D}(E)}=\mathrm{h} W \sqrt{\frac{2\left[E-\varepsilon_{i}(0)\right]}{m^{*}}} \\
& M(E)=\mathrm{h} W D_{2 D}(E) v(E)
\end{aligned}
$$

$M(E)$ is proportional to the $\operatorname{DOS}(E)$ times velocity.

outline

1) Density of states
2) Example: graphene
3) Density of modes
4) Example: graphene
5) Summary

graphene

We have seen that $M(E)$ depends on dimensionality, but we assumed parabolic energy bands in both cases.

$$
E(k)=\varepsilon_{1}+\frac{\mathrm{h}^{2} k^{2}}{2 m^{*}}
$$

But what if our 2D resistor is a sheet of graphene - with linear dispersion?

$$
\begin{aligned}
& E(k)= \pm \mathrm{h} v_{F} k \\
& \vec{k}=k_{x} \hat{X}+k_{y} \hat{y}
\end{aligned}
$$

$M(E)$ for graphene

$M(E)=\gamma(E) \pi D_{2 D}(E) / 2$
$\gamma(E)=\frac{\mathrm{h} v}{L}\left(\frac{2}{\pi}\right)=\frac{\mathrm{h} v_{F}}{L}\left(\frac{2}{\pi}\right)$
$D_{2 D}(E)=\frac{2 E}{\pi \mathbf{h}^{2} v_{F}^{2}}$
$\gamma \pi D_{2 D} / 2=\left(\frac{\mathrm{h} v_{F}}{L} \frac{2}{\pi}\right) \pi\left(\frac{E}{\pi \mathrm{~h}^{2} v_{F}^{2}} W L\right)$

$$
M(E)=\frac{2 E}{\pi \mathrm{~h} v_{F}}=2 \times \frac{W}{\lambda_{B} / 2}
$$

- still proportional to W
- proportional to E, not sqrt(E)
- factor of two is for valley degeneracy
M depends on dimensionality and on the $E(k)$.

outline

1) Density of states
2) Example: graphene
3) Density of modes
4) Example: graphene
5) Summary

density of states

$$
\begin{aligned}
& D_{1 D}(E)=\frac{L}{\pi \mathrm{~h}} \sqrt{\frac{2 m^{*}}{\left(E-\varepsilon_{1}\right)}} \\
& D_{2 \mathrm{D}}(E)=A \frac{m^{*}}{\pi \mathrm{~h}^{2}} \\
& D_{3 D}(E)=\Omega \frac{m^{*} \sqrt{2 m^{*}\left(E-E_{C}\right)}}{2 \pi^{2} \mathrm{~h}^{3}}
\end{aligned}
$$

$$
\left(E(k)=E_{C}+\mathrm{h}^{2} k^{2} / 2 m^{*}\right)
$$

modes

$$
\begin{aligned}
& M_{1 \mathrm{D}}(E)=\Theta\left(E-\varepsilon_{1}\right) \\
& M_{2 \mathrm{D}}(E)=W \frac{\sqrt{2 m^{*}\left(E-\varepsilon_{1}\right)}}{\pi \mathrm{h}} \\
& M_{3 \mathrm{D}}(E)=A \frac{m^{*}}{2 \pi \mathrm{~h}^{2}}\left(E-E_{C}\right) \\
& \left(E(k)=E_{C}+\mathrm{h}^{2} k^{2} / 2 m^{*}\right)
\end{aligned}
$$

summary

1) When computing the number of electrons, the important quantity is the density of states, $D(E)$.
2) When computing the current, the important quantity is the number of modes $M(E)$.
3) The number of modes is also the number of subbands at energy, E.
4) The number of modes is the number of half wavelengths that fit into the resistor width (2D) or cross section (3D).
5) The number of modes is proportional to $D(E)$ times velocity.
