Low-Bias Transport in Graphene: an introduction

Mark Lundstrom and Dionisis Berdebes
Network for Computational Nanotechnology
Discovery Park, Purdue University
West Lafayette, IN
acknowledgments

Yang Sui, Changwook Jeong, Raseong Kim

Tony Low, Supriyo Datta and Joerg Appenzeller

A set of notes to accompany this lecture is available. The notes provide derivations for all of the equations presented in this lecture, as well as additional discussions for $T_L > 0\,\text{K}$, the role the the graphene quantum capacitance, and derivations of scattering rates. See:

D. Berdebes, T. Low, and M.S. Lundstrom, “Lecture notes on Low bias transport in graphene, July 2009.”
1) Introduction and Objectives
2) Theory
3) Experimental approach
4) Results
5) Discussion
6) Summary
Graphene is a one-atom-thick planar carbon sheet with a honeycomb lattice.

Graphene has an unusual bandstructure that leads to interesting effects and potentially useful electronic devices.

source: CNTBands 2.0 on nanoHUB.org
objectives

• Describe the experimental techniques commonly-used to characterize low-bias conductance of graphene.

• Show some typical results.

• Analyze the results and discuss the general features of low-bias transport in graphene and how they are related to carrier scattering.
1) Introduction and Objectives
2) Theory
3) Experimental approach
4) Results
5) Discussion
6) Summary
We will use a very simple description of the graphene bandstructure, which is a good approximation near the Fermi level.

We will refer to the $E_F > 0$ case, as “n-type graphene” and to the $E_F < 0$ case as “p-type graphene.”

$$E(k) = \pm \hbar \nu_F k = \pm \hbar \nu_F \sqrt{k_x^2 + k_y^2}$$

$$\nu(k) = \nu_F \approx 1 \times 10^6 \text{ cm/s}$$

$$D(E) = 2|E|/\pi \hbar^2 \nu_F^2$$
low-bias transport theory

\[I = \frac{2q}{h} \int_{-\infty}^{+\infty} T(E) M(E) \left(f_1 - f_2 \right) dE \]

\[G = \frac{I}{V} = \frac{2q^2}{h} \int_{-\infty}^{+\infty} T(E) M(E) \left(-\frac{\partial f_0}{\partial E} \right) dE \]

\[f_0 (E) = \frac{1}{1 + e^{(E-E_F)/k_B T}} \]

\[T(E) \equiv \frac{\lambda (E)}{(\lambda (E) + L)} \]

\[M(E) = W \frac{|E|}{\pi \hbar \nu_F} \]
expected results: G vs. E_F at $T_L = 0$K

$$G(0K) = \frac{2q^2}{h} T(E_F) M(E_F)$$

$$\frac{\partial f_0(E)}{\partial E} = \delta(E - E_F)$$

$$M(E) \propto |E|$$

$E_F > 0$

$E_F = 0$

$E_F < 0$
expected results: G vs. n_S at $T_L = 0K$

\[G = \frac{2q^2}{h} T(E_F) M(E_F) \]

\[n_S(E_F) = \frac{1}{\pi} \left(\frac{E_F}{\hbar \nu_F} \right)^2 \propto E_F^2 \]

\[M(E_F) \propto E_F \propto \sqrt{n_S} \]

\[G \propto \sqrt{n_S} \]
expected results: $T_L > 0K$

$G(T_L > 0K) = \frac{2q^2}{h} \langle T(E_F) M(E_F) \rangle$

$G_s(E_F = 0) > 0$

$T > 0K$

$T = 0K$

$E_F > 0$

$E_F = 0$

$E_F < 0$

$M(E) \propto |E|$
some key equations \((T = 0K)\)

\[
G(0K) = \frac{2q^2}{h} T(E_F) M(E_F)
\]

\[
M(E_F) = W \frac{2E_F}{\pi \hbar \nu_F}
\]

\[
T(E_F) = \frac{\lambda(E_F)}{(\lambda(E_F) + L)}
\]

\[
G(0K) = \frac{2q^2}{h} \frac{\lambda(E_F)}{\lambda(E_F) + L} W \frac{2E_F}{\pi \hbar \nu_F}
\]

\[
G = G_s \frac{W}{L}
\]

\[
G_s(0K) = \frac{2q^2}{h} \lambda_{app} \left(\frac{2E_F}{\pi \hbar \nu_F} \right)
\]

Describes the conductance of the conduction \((E > 0)\) or valence \((E < 0)\) bands.

(For \(T > 0\), the total conductance is the sum of the two.)

\[
\frac{1}{\lambda_{app}} = \frac{1}{\lambda(E_F)} + \frac{1}{L}
\]

\(G_s\) is the “sheet conductance” or conductivity, \(\sigma\)
When $E_F > 0$, graphene is strongly degenerate and:

$$G_S(E_F) = \left(\frac{2q^2k_B T_L}{\pi^2 \hbar^2 \nu_F} \right) \left\langle \lambda_{app} \right\rangle F_0 \left(\frac{E_F}{k_B T_L} \right) \approx \frac{2q^2}{\hbar} \lambda_{app} \left(E_F \right) \left(\frac{2E_F}{\pi \hbar \nu_F} \right)$$

$T_L > 0K$ result $\approx T_L = 0K$ result

$$n_S = \left(\frac{2}{\pi} \right) \left(\frac{k_B T_L}{\hbar \nu_F} \right)^2 F_1 \left(\frac{E_F}{k_B T_L} \right) \approx \frac{1}{\pi} \left(\frac{E_F}{\hbar \nu_F} \right)^2$$
questions

• How is G vs. E_F (or G vs. n_S) measured experimentally?

• How do the results compare to theory?

• What do the results us about scattering in graphene?

1) Introduction and Objectives
2) Theory
3) Experimental approach
4) Results
5) Discussion
6) Summary
gate-modulated conductance in graphene

1) The location of the Fermi level (or equivalently the carrier density) is experimentally controlled by a “gate.”

2) In a typical experiments, a layer of graphene is place on a layer of SiO₂, which is on a doped silicon substrate. By changing the potential of the Si substrate (the “back gate”), the potential in the graphene can be modulated to vary E_F and, therefore, n_S.
Typically, Cr/Au or Ti/Au are used for the metal contacts.

The thickness of SiO$_2$ is typically 300nm or 90nm, which makes it possible to see a single layer of graphene.
“Temperature-Dependent Transport in Suspended Graphene”

measurements

At a fixed temperature:

\[G(V_G) \text{ or } R(V_G) \]

At a fixed gate voltage:

\[G(T_L) \text{ or } R(T_L) \]

Frequently the sheet conductance or sheet resistance is reported (and this is usually referred to as the ‘conductivity’ or the ‘resistivity.’)

\[G = G_S \left(\frac{W}{L} \right) \]

\[R = R_S \left(\frac{L}{W} \right) \]
using a gate voltage to change the Dirac point (or E_F)

\[V_G = V_G - V_{NP} \]

\[V_G' = V_G - V_{NP} \]

Back gate (doped Si)

\[\Delta V \]

\[I \]

\[E(k) \]

\[V_G > 0 \]

\[V_G = 0 \]

\[V_G < 0 \]
gate voltage - carrier density relation

If the oxide is not too thin (so that the quantum capacitance of the graphene is not important), then:

\[qn_S = C_{ins} V_G \]

\[C_{ins} = \frac{\varepsilon_{ins}}{t_{ins}} \]
outline

1) Introduction and Objectives
2) Theory
3) Experimental approach
4) Results
5) Discussion
6) Summary
sheet conductance vs. V_G

\[G = G_S W/L \]

\[G_S(E_F) \approx \frac{2q^2}{h} \lambda_{app}(E_F) \left(\frac{2E_F}{\pi \hbar \nu_F} \right) \]

\[n_S = C_{ox} V_G \approx \frac{1}{\pi} \left(\frac{E_F}{\hbar \nu_F} \right)^2 \]

\[\lambda_{app}(E_F) = \frac{G_S \left(2q^2 / h \right)}{2 \sqrt{n_S / \pi}} \]

mean-free-path ($V_G = 100V$)

$G_S \approx 3.0 \text{ mS}$

$n_s \approx 7.1 \times 10^{12} \text{ cm}^{-2}$

$E_F \approx 0.3 \text{ eV}$

$\lambda_{app}(0.3 \text{ eV}) \approx 130 \text{ nm}$

$\lambda(0.3 \text{ eV}) \ll L$
mean-free-path ($V_G = 50V$)

- $G_S \approx 1.5 \text{ mS}$
- $n_s \approx 3.6 \times 10^{12} \text{ cm}^{-2}$
- $E_F \approx 0.2 \text{ eV}$
- $\lambda_{app}(0.2 \text{ eV}) \approx 90 \text{ nm}$
- $\frac{\lambda(0.2 \text{ eV})}{\lambda(0.3 \text{ eV})} \approx 0.69$
- $\frac{0.2 \text{ eV}}{0.3 \text{ eV}} \approx 0.67$
- $\lambda(E_F) \propto E_F$
Since, $G_S \sim n_S$, we can write:

$$G_S \equiv n_S q \mu_n$$

and deduce a mobility:

$$\mu_n \approx 12,500 \text{ cm}^2 / \text{V-sec}$$

Mobility is constant, but mean-free-path depends on the Fermi energy (or n_S).
$V_G = 0$

$G_S \approx 0.16 \text{ mS}$

$n_s = C_{ox} V_G \approx 0 ?$

$\lambda_{app} = \frac{G_S}{(2q^2/h)2\sqrt{n_s/\pi}}$

$\lambda_{app} \rightarrow \infty ?$

$\left(T_L = 0 \text{ K} \right)$
electron-hole puddles

The effect of potassium doping on the charge-carrier transport in graphene was studied by J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami. In nominally undoped samples, the graphene mobility G_S vs. the sheet carrier density n_S is non-linear. As doping increases, G_S vs. n_S becomes more linear, the mobility decreases, and the normal process (NP) shifts to the left.

nominally undoped sample

\[t_{ox} = 300 \text{ nm} \]
\[\lambda \ll L \]
\[T = 20K \]

\[\lambda_{app} = \frac{G_S / \left(\frac{2q^2}{h} \right)}{2 \sqrt{n_{S}/\pi}} \approx 164 \text{ nm} \]

\[\lambda \ll L \]

Away from the conductance minimum, the conductance decreases as T_L increases (or resistivity increases as temperature increases).

\[T_L < 100 K : \quad R_S \propto T_L \]

(acoustic phonon scattering - intrinsic)

\[T_L > 100 K : \quad R_S \propto e^{\hbar \omega_0 / k_B T_L} \]

(optical phonons in graphene or surface phonons at SiO$_2$ substrate)

phonons and temperature dependence

\[R_S = \frac{1}{G_S} \propto \frac{1}{\lambda} \propto N_\beta \]

\[N_\beta = \frac{1}{e^{\hbar \omega (\beta)/k_B T_L} - 1} \]

Acoustic phonons:

\[\hbar \omega < k_B T_L \]

\[N_\beta \approx \frac{k_B T_L}{\hbar \omega} \]

\[R_S \propto T_L \]

Optical phonons:

\[\hbar \omega_0 \approx k_B T_L \]

\[N_\beta = \frac{1}{e^{\hbar \omega_0/k_B T_L} - 1} \]

\[R_S \propto \frac{1}{e^{\hbar \omega_0/k_B T_L} - 1} \]
unannealed vs. annealed suspended graphene

\[G_S \propto \sqrt{n_S} \]

\[\lambda_{app} \approx 1300 \text{ nm} \]

expected from ballistic theory

\[G_S = n_S q \mu_n + G_{res} \]

about mobility

\[G_S(E_F) \approx \frac{2q^2}{h} \lambda_{app}(E_F) \left(\frac{2E_F}{\pi \hbar \nu_F} \right) \]

\[G_S(E_F) \propto \lambda_{app}(E_F) \sqrt{n_S} \]

\[G_S \equiv n_S q \mu_n \]

\[\mu_n \propto \frac{\lambda_{app}(E_F)}{\sqrt{n_S}} \]

Case 1):

\[\lambda_{app} \propto E_F \propto \sqrt{n_S} \]

\[G_S \propto n_S \]

\[\mu_n \text{ constant} \]

Case 2):

\[\lambda_{app} \text{ constant} \]

\[G_S \propto \sqrt{n_S} \]

\[\mu_n \propto \frac{1}{\sqrt{n_S}} \]
Experimental summary: graphene on SiO$_2$

1) Low conductance samples often show $G_S \sim n_S$ (away from the minimum)

2) Higher conductance samples are frequently non-linear (G_S rolls off at higher n_S)

3) $G_S(T)$ decreases with temperature (“metallic”) for large n_S

4) $R_S \sim T_L$ for $T_L < 100$K and superlinear for $T_L > 100$K

5) Best mobilities for graphene on SiO$_2$ are $\sim 30,000$ cm2/V-s at $T_L = 5$K

6) Asymmetries between $+V_G$ and $-V_G$ are often seen.
experimental summary: suspended graphene

1) Before annealing $G_S \sim n_S$ (away from the minimum)

2) After annealing, G_S increases and G_S vs. n_S becomes non-linear

3) After annealing, G_S is close to the ballistic limit

4) Best mean-free-paths are $\sim 1 \mu m$ at $T_L = 5K$

5) G_S decreases with T_L for large n_S but increases with T_L near the Dirac point.
outline

1) Introduction and Objectives
2) Theory
3) Experimental approach
4) Results
5) Discussion
6) Summary
conductance and scattering

\[G(0K) = \frac{2q^2}{h} \frac{\lambda(E_F)}{\lambda(E_F) + L} W \frac{2E_F}{\pi \hbar \nu_F} \]

\(\lambda(E) \) is the mean-free-path (technically, the mfp for “backscattering”), which is determined by the dominant scattering processes.
scattering

\[\frac{1}{\tau(E)} \]
scattering rate per sec

typically computed from FGR

\[\lambda(E) \propto v_F \tau(E) \]
mean-free-path for backscattering
scattering

\[\lambda(E) = \frac{\pi}{2} \nu_F \tau_m(E) \quad \text{(elastic or isotropic scattering)} \]

For many scattering mechanisms (e.g. acoustic phonon, point defect), the scattering rate is proportional to the density of final states:

\[\frac{1}{\tau(E)} \propto D(E) \propto E \quad \tau(E) \propto E^{-1} \]

The energy-dependent mean-free-path is:

\[\lambda(E) \propto \frac{1}{E} \]

What does this type of scattering do to the conductance?
effect of short range / ADP scattering

Assume $T_L = 0$ K and diffusive transport (just to keep the math simple)

$$G_S = \frac{2q^2}{h} \lambda \left(E_F \right) \left(\frac{2E_F}{\pi \hbar \nu_F} \right) \lambda \left(E_F \right) \propto \frac{1}{E_F}$$

$G_S = \text{constant!}$

For short range or ADP scattering, G_S is constant.

long range (charged impurity) scattering

For screened or unscreened charged impurity scattering, the mfp is proportional to energy.

Random charges introduce random fluctuations in $E(k)$, which act as scattering centers.

High energy electrons don’t “see” these fluctuations and are not scattered as strongly.
effect of charged impurity scattering

Assume $T_L = 0$ K and diffusive transport (just to keep the math simple)

$$G_S = \frac{2q^2}{h} \lambda(E_F) \left(\frac{2E_F}{\pi \hbar \nu_F} \right) \lambda(E_F) \propto E_F$$

$$G_S \propto n_S \quad (\mu_n \text{ constant})$$

For charged impurity scattering, G_S vs. n_S is linear.

comment on linear G vs. n_S

The observation of a linear $G(n_S)$ characteristic is frequently taken as experimental evidence of charged impurity scattering, but…

Theoretical work shows that strong, neutral defect scatter can lead to a linear G vs. n_S characteristics…

Even more recent experimental work on intentionally damaged graphene bears this out…

the energy-dependent mfp

Mobility is not always the best way to characterize the quality of a graphene film, but mean-free-path is always a well-defined quantity. We can extract the mean-free path vs. energy from measured data.

\[G_S(0K) = \frac{2q^2}{\hbar} \lambda_{app}(E_F) \left(\frac{2E_F}{\pi \hbar \nu_F} \right) \]

\[n_S(0K) = \frac{1}{\pi} \left(\frac{E_F}{\hbar \nu_F} \right)^2 \]

\[\lambda_{app}(E_F) = \frac{G_S(V_g)/(2q^2/\hbar)}{2\sqrt{n_S(V_g)/\pi}} \]

\[\frac{1}{\lambda_{app}(E_F)} = \frac{1}{\lambda(E_F)} + \frac{1}{L} \]

The apparent mfp is the shorter of the actual mfp and the sample length.
“Temperature-Dependent Transport in Suspended Graphene”

suspended, annealed

“Temperature-Dependent Transport in Suspended Graphene”
$\lambda_{app}(E_F) = \frac{G_S(V_g)/(2q^2/h)}{2\sqrt{n_S(V_g)/\pi}}$

\[
\frac{1}{\lambda_{app}(E_F)} = \frac{1}{\lambda(E_F)} + \frac{1}{L}
\]

suspended, unannealed

linear G_S vs. n suggests charged impurity scattering.

$T = 40 \, K$

analysis complicated by large residual resistance.
minimum and residual conductance

\[G_{\text{res}} \approx G_{\text{min}} \]

\[G_{\text{res}} \approx 14 \frac{q^2}{h} \]

\[G(n_s) = G_{\text{res}} + (q\mu_1)n_s \]
suspended, unannealed

\[\lambda_{app} (E_F) = \left(\frac{G_S(V_g) - G_{res}}{2q^2/h} \right) \left(\frac{2\sqrt{n_S(V_g)}}{\pi} \right) \]
We have discussed $V_g (n_S) > 0$, but by symmetry, the same thing should occur for p-type graphene ($E_F < 0$).

If the mfp is small and constant, then G is also proportional to $\sqrt{n_S}$, but the magnitude is less than the ballistic limit.
general picture of \(G_S \) vs. \(n_S \) (diffusive)

Short range or acoustic phonon scattering.

Charged-impurity (long-range) scattering. Constant mobility.

Result is a combination of charged impurity and phonon scattering.

Non-zero residual resistance commonly observed.
1) Introduction and Objectives
2) Theory
3) Experimental approach
4) Results
5) Discussion
6) Summary
The general features of the graphene conductance vs. gate voltage are readily understood (but still being discussed).

Data can be analyzed by extracting the mean-free-path for backscattering and relating it to the underlying scattering mechanisms.

More sophisticated theoretical treatments include screening, remote, polar phonons, etc.

Actual experiments are frequently non-ideal (e.g. not symmetrical about V_{NP}, non monotonic behavior, variations due to sample state, uncertainties in W and L, etc.

But the material presented here gives a general framework and starting point for analyzing experimental data.
minimum and residual conductance

\[
G_{\text{res}} \approx 14 \frac{q^2}{h} \quad \text{and} \quad G(n_s) = G_{\text{res}} + (q \mu_1) n_s
\]
suspended, unannealed

linear G_S vs. n suggests charged impurity scattering.

Expect $\sim \lambda |E|$

$T = 40K$

analysis complicated by large residual resistance.