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PN junctions:  semiconductors vs. graphene
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experimental observation
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B. Huard, J.A. Sulpizo, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, 
Transport measurements across a tunable potential barrier in graphene,” Phys. 
Rev. Lett., 98, 236803, 2007.



electron “optics” in graphene

Semiclassical electron trajectories 
are analogous to the rays in 
geometrical optics.

If the mfp is long, one may be able 
to realize graphene analogues of 
optical devices.



Snell’s Law
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Veselago lens
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n2 = −n1
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theoretical prediction

Science, 315, 1252, March 2007 N-type P-type

electron trajectories



making graphene PN junctions

From:  N. Stander, B. Huard, and D. Goldhaber-Gordon, “Evidence for 
Klein Tunneling in Graphene p-n Junctions,” PRL 102, 026807 
(2009)
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band diagrams:  conventional PN junctions
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band diagrams:  graphene PN junctions
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an abrupt graphene N+N junction
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an abrupt graphene PN junction
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conductance of graphene junctions
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objectives

To understand:

1) Electron “optics” in NP junctions

2) The conductance of NP and NN junctions
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about graphene
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electron wavefunction in graphene
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absence of backscattering
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a graphene PN junction
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group velocity and wavevector
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what happens for parabolic bands?
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optics

Snell’s Law
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electron trajectories in graphene PN junctions

rays in geometrical optics are analogous to semiclassical electron trajectories 
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on the N-side…
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a symmetrical PN junction
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wavevectors
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wavevectors and velocities
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more generally
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ε1 sinθ1 = ε2 sinθ2

critical angle for total internal reflection
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reflection and transmission
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We know the direction of the reflected and transmitted rays, 
but what are their magnitudes? 
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reflection and transmission

N-type P-type

34

x

y

R θi( )∝ r 2 T θi( )∝ t 2

θ1





ki

1) incident wave:

ψ i x, y( )= 1
seiθ







ei kx x+ kyy( )

1θ ′



kr

2) reflected wave:

ψ r x, y( )= r 1
seiθ







ei − kx x+ kyy( )

θ2





kt

3) transmitted wave:

ψ x, y( )= t 1
seiθ







ei − kx x+ kyy( )

s = sgn E( ) θ = arctan ky kx( )



−90
−60

−30

1.00

transmission:  abrupt, symmetrical NP junction

perfect transmission for  = 0

kx

ky





υ

kx

ky





υ
incident

transmitted

T θi( )= cos2 θi



conductance of abrupt NN and NP junctions

T θi( )= cos2 θi

This transmission reduces the conductance of NP junctions 
compared to NN junctions, but not nearly enough to explain 
experimental observations.



37

a graded, symmetrical PN junction
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treat each ray (mode) separately
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for each ky (transverse mode)
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NEGF simulation

T. Low, et al., IEEE TED, 56, 
1292, 2009  
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propagation across a symmetrical NP junction
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WKB tunneling
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transmission vs. angle

More generally, to include the 
reflections for abrupt junctions 
(small d):
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graphene junctions:  NN, NP, PP, PN
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graphene junctions
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conductance of graphene junctions
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conductance vs. EF and VJ
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measured transport across a tunable barrier

B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, “Transport 
Measurements Across a Tunable Potential Barrier in Graphene, Phys. Rev. Lett., 98, 236803, 
2007.
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experimental resistance

B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, “Transport 
Measurements Across a Tunable Potential Barrier in Graphene, Phys. Rev. Lett., 98, 236803, 
2007.
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NEGF simulation of abrupt junctions
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conductance of abrupt graphene junctions
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conductance of graded graphene junctions
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conductance vs. gate voltage measurements
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121402(R), 2008.
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conclusions

1) For abrupt graphene PN junctions transmission is 
reduced due to wavefunction mismatch.

2) For graded junctions, tunneling reduces  transmission 
and sharply focuses it.

3) Normal incident rays transmit perfectly

4) The conductance of a graphene PN junction can be 
considerably less than that of an NN junction.

5) Graphene PN junctions may affect measurements and 
may be useful for focusing and guiding electrons.
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