ECE-656: Fall 2009

Lecture 7: 2 and 3D Resistors

Professor Mark Lundstrom
Electrical and Computer Engineering Purdue University, West Lafayette, IN USA

1D resistors

outline

1) Another view of the same problem
2) 2 D resistors
3) Discussion
4) 3D resistors
5) Summary

1D resistor: k-space treatment

Lundstrom ECE-656 F09

e-band diagram: conventional resistor

conventional resistor:

Lundstrom ECE-656 F09

why is the e-band diagram constant?

The potential inside the resistor must be constant in order to maintain the electron density constant at its equilibrium value. (Note: the figure is exaggerated for emphasis. Under near-equilibrium condiutions, $n^{+} \approx n^{-}$)

another view

S. Datta, Electronic Conduction in Mesoscopic Systems, Chpt. 2, Cambridge, 1995 Lundstrom ECE-656 F09

outline

1) Another view of the same problem
2) 2 D resistors
3) Discussion
4) 3D resistors
5) Summary

review: modes in 2D

Lundstrom ECE-656 F09

waveguide modes

Assume that there is one (or a few) subbands associated with confinement in the z-direction. Many subbands associated with confinement in the y-direction.
lowest mode

$M=\#$ of electron half wavelengths that fit into W.

more on modes ($T=0 \mathrm{~K}$)

$M_{2 D}\left(E_{F}\right)=W \frac{\sqrt{2 m^{*}\left(E_{F}-\varepsilon_{1}\right)}}{\pi \hbar} \quad$ depends on bandstructure

$$
M_{2 D}\left(E_{F}\right)=\frac{W}{\left(\lambda_{F} / 2\right)}=\frac{W k_{F}}{\pi} \quad n_{S}=\frac{\pi k_{F}^{2}}{(2 \pi)^{2}} \times 2 \rightarrow k_{F}=\sqrt{2 \pi n_{S}}
$$

$$
M_{2 D}\left(E_{F}\right)=W \sqrt{\frac{2 n_{S}}{\pi}}
$$

depends only on n_{S}

ballistic transport in 2D

diffusive transport in 2D

- Electrons undergo a random walk as they go from left to right contact.
- Some terminate a contact 1 , and some at contact 2.
- The average distance between collisions is the mfp, λ
- "Diffusive" transport means $L \gg \lambda$
- We expect that the diffusive transit time will be much longer than the ballistic transit time.

conductance in 2D

$$
\begin{array}{ll}
G=\frac{2 q^{2}}{h}\left(\int T(E) M(E)\left(-\frac{\partial f_{0}}{\partial E}\right) d E\right) \quad M_{2 D}(E)=W g_{V} \frac{\sqrt{2 m^{*}\left(E-\varepsilon_{1}\right)}}{\pi \hbar} \\
T=0 \mathrm{~K}: \quad G_{2 D}=\frac{2 q^{2}}{h} T\left(E_{F}\right) M\left(E_{F}\right) \quad T(E)=\frac{\lambda(E)}{\lambda(E)+L}
\end{array}
$$

i) ballistic: $\quad G_{2 D}=\frac{2 q^{2}}{h} M\left(E_{F}\right) \propto W$
$T=0 \mathrm{~K}$
ii) diffusive: $\quad G_{2 D}=\frac{2 q^{2}}{h} \frac{\lambda\left(E_{F}\right)}{L} M\left(E_{F}\right) \propto \frac{W}{L}$
$G_{2 D}($ diff $)=G_{2 D}($ ball $) \times \lambda / L$

conductance in 2D (ii)

$$
\begin{aligned}
& G=\frac{2 q^{2}}{h}\left(\int T(E) M(E)\left(-\frac{\partial f_{0}}{\partial E}\right) d E\right) \quad M_{2 D}(E)=W g_{V} \frac{\sqrt{2 m^{*}\left(E-\varepsilon_{1}\right)}}{\pi \hbar} \\
& T>0 \mathrm{~K}: \quad G_{2 D}=\frac{2 q^{2}}{h} \frac{\lambda_{0}}{\lambda_{0}+L} W \sqrt{\frac{m^{*} k_{B} T}{2 \pi \hbar^{2}}} F_{-1 / 2}\left(\eta_{F}\right)
\end{aligned}
$$

2D diffusive conductance ($T=0 \mathrm{~K}$)

$$
G_{2 D}=\frac{2 q^{2}}{h} \frac{\lambda\left(E_{F}\right)}{L} M\left(E_{F}\right)
$$

$$
\begin{gathered}
G_{2 D}=\sigma_{S} \frac{W}{L} \\
\lambda\left(E_{F}\right)=\frac{\pi}{2} v\left(E_{F}\right) \tau\left(E_{F}\right)
\end{gathered}
$$

$$
\sigma_{S}=\frac{2 q^{2}}{h} \lambda\left(E_{F}\right) M\left(E_{F}\right) / W
$$

$$
\begin{gathered}
\sigma_{S}=n_{S} q \mu_{n} \\
\mu_{n}=q \tau\left(E_{F}\right) / m^{*} \\
\sigma_{S}=q^{2} D_{2 D}\left(E_{F}\right) D_{n}\left(E_{F}\right) \\
D_{n}\left(E_{F}\right)=v^{2}\left(E_{F}\right) \tau\left(E_{F}\right) / 2
\end{gathered}
$$

conductance in 2D: summary

1) The ballistic G is independent of the length of the resistor but proportional to W, because $M(E) \sim W$.
2) The diffusive G is proportional to (W / L) because $T(E) \sim 1 / L$
3) The number of transverse modes, $M_{2 D}(E)$, depends on the bandstructure.
4) The number of transverse modes, $M_{2 D}\left(n_{S}\right)$, depends only the carriers density ($T=0 \mathrm{~K}$).

outline

1) Another view of the same problem
2) 2 D resistors
3) Discussion
4) 3D resistors
5) Summary

example: nanoscale FETs

$$
\begin{aligned}
& R_{T O T}=\frac{V_{D S}}{I_{D}}=R_{S D}+R_{C H} \\
& R_{S D} \approx 200 \Omega-\mu \mathrm{m}
\end{aligned}
$$

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)
Question: How close is the channel resistance to the ballistic resistance?

a "back of the envelope" calculation

Si N-MOSFET (unstrained):

$$
\begin{aligned}
& G_{c h}=T_{\text {lin }} G_{B}=\frac{\lambda_{0}}{\lambda_{0}+L} G_{B} \\
& T_{\text {lin }}=\frac{\lambda_{0}}{\lambda_{0}+L} \approx 0.20 \\
& G_{c h} \approx 0.20 G_{B} \rightarrow R_{c h} \approx 5 \times R_{B}
\end{aligned}
$$

$\mu_{n} \approx 260 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$
$D_{n}=\frac{v_{T} \lambda_{0}}{2}$
$v_{T}=\sqrt{\frac{2 k_{B} T}{\pi m^{*}}}=1.2 \times 10^{7} \mathrm{~cm} / \mathrm{s}$
$\left(m^{*}=0.19 m_{0}\right)$
$\lambda_{0} \approx 14 \mathrm{~nm}$
$\lambda_{0} \ll L=60 \mathrm{~nm}$

III-V FETs

InGaAs HEMT:

$$
\begin{gathered}
G_{c h}=T_{l i n} G_{B}=\frac{\lambda_{0}}{\lambda_{0}+L} G_{B} \\
T_{\text {lin }}=\frac{\lambda_{0}}{\lambda_{0}+L} \approx 0.8 \\
G_{c h} \approx G_{B} \rightarrow R_{c h} \approx R_{B}
\end{gathered}
$$

$$
\begin{aligned}
& \mu_{n} \approx 10,000 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s} \\
& D_{n}=\frac{v_{T} \lambda_{0}}{2} \\
& v_{T}=\sqrt{\frac{2 k_{B} T}{\pi m^{*}}}=2.7 \times 10^{7} \mathrm{~cm} / \mathrm{s} \\
& \left(m^{*}=0.041 m_{0}\right) \\
& \lambda_{0} \approx 200 \mathrm{~nm} \\
& \lambda_{0}>L
\end{aligned}
$$

a second example about nanoscale FETs

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

$$
\begin{aligned}
& M_{2 D}\left(E_{F}\right)=W g_{V} \frac{\sqrt{2 m^{*}\left(E_{F}-\varepsilon_{1}\right)}}{\pi \hbar} \\
& M_{2 D}\left(k_{F}\right)=\frac{W}{\left(\lambda_{F} / 2\right)}=\frac{W k_{F}}{\pi} \\
& n_{S}\left(k_{F}\right)=g_{V} \frac{k_{F}^{2}}{2 \pi}
\end{aligned}
$$

$$
M_{2 D}\left(k_{F}\right)=W \sqrt{\frac{2 n_{S}}{\pi g_{V}}}
$$

Question: How many transverse modes are there in a 1 micron wide FET?

number of conducting channels in a FET

$$
M_{2 D}\left(k_{F}\right)=W \sqrt{\frac{2 n_{S}}{\pi g_{V}}}
$$

Silicon n-MOSFETs:

$$
\begin{aligned}
& n_{S} \approx 1 \times 10^{13} \mathrm{~cm}^{-2} \\
& g_{V}=2 \\
& M_{2 D} \approx 180 / \mu \mathrm{m}
\end{aligned}
$$

InGaAs HEMTs:
$n_{S} \approx 2 \times 10^{12} \mathrm{~cm}^{-2}$
$g_{V}=1$
$M_{2 D} \approx 110 / \mu \mathrm{m}$

graphene

Fig. 30 in A. H. Castro, et al.,"The electronic properties of graphene," Rev. of Mod. Phys., 81, 109, 2009.

CNTBands 2.0 (nanoHUB.org)

$$
\begin{aligned}
& E(k)= \pm \hbar v_{F} k \\
& v(k)=v_{F} \\
& v_{F} \approx 1 \times 10^{8} \mathrm{~cm} / \mathrm{s} \\
& D(E)=\frac{2|E|}{\pi \hbar^{2} v_{F}^{2}} \\
& M(E)=\frac{W 2|E|}{\pi \hbar v_{F}}
\end{aligned}
$$

questions

Fig. 30 in A. H. Castro, et al.,"The electronic properties of graphene," Rev. of Mod. Phys., 81, 109, 2009.

analysis

$$
\begin{aligned}
& G_{2 D}=\frac{2 q^{2}}{h} \frac{\lambda\left(E_{F}\right)}{L} M\left(E_{F}\right)=\sigma_{S} \frac{W}{L} \\
& G_{B}=\frac{2 q^{2}}{h} M\left(E_{F}\right) \\
& n_{S}\left(E_{F}\right)=\frac{1}{\pi}\left(\frac{E_{F}}{\hbar v_{F}}\right)^{2} \rightarrow E_{F}=0.3 \mathrm{eV} \\
& M\left(E_{F}\right)=W 2 E_{F} / \pi \hbar v_{F}
\end{aligned}
$$

$$
\begin{gathered}
\sigma_{S}(\text { meas })=(\lambda / L) \sigma_{S}(\text { ball }) \\
\lambda(0.3 \mathrm{eV}) \approx 130 \mathrm{~nm} \\
\sigma_{S}(\text { meas }) \approx \sigma_{S}(\text { ball }) / 40
\end{gathered}
$$

For more about the conductance of graphene, see: "Low-bias transport in graphene," by M.S. Lundstrom and D. Berdebes, NCN@Purdue 2009 Summer School, nanoHUB.org

mobility of graphene?

$$
\begin{gathered}
G_{2 D}=\frac{2 q^{2}}{h} \frac{\lambda\left(E_{F}\right)}{L} M\left(E_{F}\right)=n_{S} q \mu_{n} \frac{W}{L} \\
\mu_{n}=\frac{2 q}{h} \frac{\lambda\left(E_{F}\right) M\left(E_{F}\right) / W}{n_{S}}
\end{gathered}
$$

$$
\begin{array}{ll}
M(E)=W 2 E_{F} / \pi \hbar v_{F} & \\
\lambda(E)=\frac{\pi}{2} v_{F} \tau\left(E_{F}\right) & \mu_{n}=\frac{q \tau\left(E_{F}\right)}{\left(E_{F} / v_{F}^{2}\right)} \\
n_{S}\left(E_{F}\right)=\frac{1}{\pi}\left(\frac{E_{F}}{\hbar v_{F}}\right)^{2} &
\end{array}
$$

outline

1) Another view of the same problem
2) 2 D resistors
3) Discussion
4) 3D resistors
5) Summary

$M(E)$ in 3D

If the cross-sectional area is large, then there is no quantum confinement, and electrons are free to move in 3D.

$$
\begin{aligned}
& D_{3 D}(E)=A L \frac{m^{*} \sqrt{2 m^{*}\left(E-E_{C}\right)}}{2 \pi^{2} \hbar^{3}} \\
& M_{3 D}(E)=A \frac{m^{*}}{2 \pi \hbar^{2}}\left(E-E_{C}\right) \\
& E(k)=E_{C}+\frac{\hbar^{2} k^{2}}{2 m^{*}}
\end{aligned}
$$

resistors in 3D

$$
\begin{aligned}
& G=\frac{2 q^{2}}{h}\left(\int T(E) M(E)\left(-\frac{\partial f_{0}}{\partial E}\right) d E\right) \\
& M_{3 \mathrm{D}}(E)=A \frac{m^{*}}{2 \pi \hbar^{2}}\left(E-E_{C}\right) \\
& T(E)=\frac{\lambda(E)}{\lambda(E)+L}
\end{aligned}
$$

$$
\begin{aligned}
& G_{B} \propto A \\
& G_{\text {diff }} \propto \frac{A}{L}=\sigma \frac{A}{L} \\
& G_{\text {diff }}=n q \mu_{n} \frac{A}{L}
\end{aligned}
$$

$$
\begin{aligned}
& G_{3 D}=\left(\frac{2 q^{2}}{h}\right)\left(\frac{m^{*} k_{B} T}{2 \pi \hbar^{2}}\right)\left(\frac{\lambda_{0}}{\lambda_{0}+L}\right) A F_{0}\left(\eta_{F}\right) \\
& G_{3 D}(0 \mathrm{~K})=\frac{2 q^{2}}{h} M_{3 D}\left(E_{F}\right) T\left(E_{F}\right) \\
& \quad \text { Lundstrom ECE-656 }
\end{aligned}
$$

Lundstrom ECE-656 F09

outline

1) Another view of the same problem
2) 2 D resistors
3) Discussion
4) 3D resistors

5) Summary

Landauer formula (low bias)

$$
G=\frac{2 q^{2}}{h}\left(\int T(E) M(E)\left(-\frac{\partial f_{0}}{\partial E}\right) d E\right)
$$

- $M(E)$ depends on bandstructure
- $T(E)$ depends on scattering physics
- $G=n q \mu_{n}$ in the diffusive limit
- The term, $\left(-\partial f_{0} / \partial E\right)$ comes from approximating $\left(f_{1}-f_{2}\right)$ for low bias.

Landauer formula (cont.)

$$
G=\frac{2 q^{2}}{h}\left(\int T(E) M(E)\left(-\frac{\partial f_{0}}{\partial E}\right) d E\right)
$$

- works in 1D, 2D, or 3D for any bandstructure
- $G_{2 D} \sim W$ because $M_{2 D} \sim W$
- $G_{3 D} \sim A$ because $M_{3 D} \sim A$
- $G_{\text {diff }} \sim 1 / L$ because $T_{\text {diff }} \sim 1 / L$
- G_{B} is independent of L and represents an upper limit to G (lower limit to R)

questions

1) Another view of the same problem
2) 2 D resistors
3) Discussion
4) 3 D resistors

5) Summary
