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Basics of Transport  
in Nanostructures

Nick Fang

Course Website: nanoHUB.org
Compass.illinois.edu

Introduction of Nano Science and Tech
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For Quantum Particles

• Electrons: only two states 
possible (conduction, valence)

• Photons and Phonons: all 
possible states of energy
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How Fast do they move?

• Let’s calculate the average kinetic energy

p(vx,vy, vz)dvz

• For monatomic gas

At room temperature (300 K), this average 
energy is 39 meV, or 6.21x10-21 J. 

For He gas, m=6.4x10-27 kg,  v~1000 m/s
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Photon Excitation in Materials

Lorenz Oscillator Model: 
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http://en.wikipedia.org/wiki/Permittivity
#Complex_permittivity
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Surface Plasmons
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• EM waves propagating along 
the interface between two media 
with their  of opposite sign.

• Intensity maximum at interface; 
exponentially decays away from 
the interface. kx
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Application: Metamaterials

Metamaterials

Subdiffraction imaging 

Fang et al., Science, 2005

Chen et al., PRL, 2007

Invisibility cloaks 

Telecom applications 

Logeeswaran et al., Appl. Phys. A, 2007

• Materials Today’s top 10 advances in material science over the past 50 years 
• Discover top 100 science stories of the year 2006

Van Duyne et al., MRS bulletin, 2005

Sensing
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Microscopic Transport Theory

To understand nanoscale transport and energy 
conversion, we need to know: 

— How much energy/momentum can a particle have?

— How many particles have the specified energy E? 

— How fast do they move? 

— How do they interact with each other?

— How far can they travel?
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D

D

How Far Can They Travel? 

Total Length Traveled = L

E.G. Ideal Gas:
Total Collision Volume
Swept = D2L

Number Density of Molecules = n 

Total number of molecules encountered in
swept collision volume ~ nD2L

Average Distance between
Collisions, mc = L/(#of collisions)

Mean Free Path
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: collision cross-sectional area
~ nm2
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Mean Free Path for Gas Molecules

Number Density of
Molecules from Ideal

Gas Law:                    n = P/kBT
kB: Boltzmann constant

1.38 x 10-23 J/K

Mean Free Path:  

 P

Tk

n
B
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Typical Numbers:

Diameter of Molecules, D  2 Å = 2 x10-10 m
Collision Cross-section:   1.3 x 10-19 m2

Mean Free Path at Atmospheric Pressure:  

m0.3or m103
103.110

3001038.1 7
195

23










mc

At 1 Torr pressure, mc  200 m;  at 1 mTorr, mc  20 cm
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Wall

Wall

b: boundary separation

Effective Mean Free Path:  

Effect of Nanoscale confinement

bmc 
111


The smaller 
dimension governs 
collision time!
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Internal Energy and Specific Heat

• Now we know the energy and momentum of 
particles/carriers in the material, we can start 
counting the properties

• E.G. Internal energy

Boltzmann 
Distribution

Density of 
States

Energy of  
Carrier at 
Given States

Translation

Vibration

Rotation
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E.G. Internal Energy of Photons
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Thermal Radiation (Planck’s Law)

• Total Internal Energy of 
Vacuum Photons:
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http://upload.wikimedia.org/wikipedia/commons/8/85/BlackbodySpectrum_lin_150dpi_en.png

describes the spectral radiance of 
electromagnetic radiation at temperature T. 
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Thermal Radiation (Stefan-Boltzmann)
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The emissive power of 
Black body radiation: 
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Stefan-Boltzmann’s Law
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Internal Energy of Phonons

• E.G. in a bulk solid
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Specific Heat Capacity

• The specific heat capacity is defined by change of internal 
energy per unit temperature change:

Specific heat of 
diamond
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Size Effect on Heat Capacity

E.G. graphene,  D<<LModified Density of States
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Nanoparticles:
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Transport Properties

• E.G. Heat Conduction
L

Hot Cold

In micro-nano scale thermal and fluid systems, often L < mean free path 
of collision of energy carriers & Fourier’s law breaks down
 Particle transport theories or molecular dynamics methods
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Kinetic Theory of  Energy Transport
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With a bit More Geometrics

Velocity:



Vx

Vy



d

Vz

V

2222
zyx VVVV 

Vx=Vsincos
Vy=Vsinsin
Vz=Vcos

 
dz

du
vq 2cos



ME 498 © 2006-09 Nick Fang, University of Illinois.  All rights reserved. 21

Averaging over all the solid angles
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Assuming local thermodynamic equilibrium: u = u(T)
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Likewise…

• Newton’s shear 
stress Law
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Additional Reading

• Tien, Majumdar, Gerner, “Microscale Energy 
Transport”, Chapter 1, Taylor&Francis (pdf
online)

• ECE 598EP: Hot Chips: Atoms to Heat Sinks

http://poplab.ece.illinois.edu/teaching.html


