ECE-656: Fall 2009

Lecture 10: The drift-diffusion equation

Professor Mark Lundstrom
Electrical and Computer Engineering Purdue University, West Lafayette, IN USA

outline

1) Transport in the bulk

2) The DD equation
3) Indicial notation
4) DD equation with B-field

current flow in a nanoresistor

$$
I_{x}=\bigodot \frac{2 q}{h} \int_{\varepsilon_{1}}^{\infty} T(E) M(E)\left(f_{1}-f_{2}\right) d E
$$

$$
T(E)=\frac{\lambda(E)}{\lambda(E)+L}
$$

(elastic scattering)

$$
\left\{f_{1}=f_{2}=f_{0}\right\}
$$

transport regimes and driving forces

1) Ballistic: $\quad \lambda \gg L, T \approx 1$
2) Quasi-Ballistic : $\lambda \approx L, T<1$
3) Diffusive: $\quad \lambda \ll L, T \ll 1$

Driving "forces" for current
bulk transport

$$
\begin{aligned}
& \Delta E_{F}=-q \Delta V=-q\left(V_{2}-V_{1}\right) \\
& \Delta T=T_{2}-T_{1}
\end{aligned}
$$

bulk transport

bulk transport

$$
\begin{aligned}
& I_{x}=\left\{-\frac{2 q^{2}}{h} \int T(E)\left(-\frac{\partial f_{0}}{\partial E}\right) M(E) d E\right\} V \\
& I_{x}=\left\{-\frac{2 q^{2}}{h} \int \lambda(E)=\frac{\lambda(E)}{\lambda(E)+L} \approx \frac{\lambda(E)}{L}\right. \\
& I_{x}=\left\{\frac{2 f_{0}}{h} \int \lambda(E)\left(-\frac{\partial f_{0}}{\partial E}\right) M(E) d E\right\} E_{x} \\
& \frac{I_{x}}{A}=J_{n x}=\left\{\frac{2 q^{2}}{h} \int \lambda(E)\left(-\frac{\partial E_{0}}{\partial E}\right) \frac{M}{h} \int \lambda(E)\left(-\frac{\partial f_{0}}{\partial E}\right) \frac{M(E)}{A} d E\right\} E_{x}=\sigma_{n} E_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { hull trnnonnet nonin } \\
& I_{x}=-\frac{2 \phi}{\ell} \quad I_{x}=\left\{-\frac{2 q^{2}}{h} \int T(E)\left(-\frac{\partial f_{0}}{\partial E}\right) M(E) d E\right\} V \quad T(E)=\frac{\lambda(E)}{\lambda(E)+L} \approx \frac{\lambda(E)}{L} \\
& I_{x}=\left\{-\frac{2 q^{2}}{h} \int \lambda(E)\left(-\frac{\partial f_{0}}{\partial E}\right) M(E) d E\right\} \frac{V}{L} \\
& J_{n x}=\sigma_{n} E_{x} \\
& \sigma_{n}=\frac{2 q^{2}}{h} \int \lambda(E)\left(-\frac{\partial f_{0}}{\partial E}\right) \frac{M(E)}{A} d E \\
& \text { of the }
\end{aligned}
$$

gradients in F_{n} and T

$$
\begin{aligned}
& I_{x}(E)=-\frac{2 q}{h} T(E) M(E)\left(f_{1}-f_{2}\right) \quad I_{x}=\int I_{x}(E) d E \\
& \left(f_{1}-f_{2}\right) \approx\left(-\frac{\partial f_{0}}{\partial E}\right)\left(-\Delta F_{n}\right)-\left(-\left(-\frac{\partial f_{0}}{\partial E}\right) \frac{\left(E-E_{F}\right)}{T} \Delta T\right. \\
& I_{x}(E)=-\frac{2 q}{h} \frac{\lambda(E)}{d x} M(E)\left(-\frac{\partial f_{0}}{\partial E}\right)\left\{\left(-\Delta F_{n}\right)-\frac{\left(E-E_{F}\right)}{T} \Delta T\right\} \\
& \left.J_{x x}(E)=\frac{2 q}{h} \lambda(E) \frac{M(E)}{A}\left(-\frac{\partial f_{0}}{\partial E}\right)\left\{\frac{d F_{n}}{d x}+\frac{\left(E-E_{F}\right)}{T}\right) \frac{d T}{d x}\right\}
\end{aligned}
$$

gradients in F_{n} and T

$$
\begin{aligned}
& J_{n x}(E)=\frac{2 q}{h} \lambda(E) \frac{M(E)}{A}\left(-\frac{\partial f_{0}}{\partial E}\right)\left\{\frac{d F_{n}}{d x}+\frac{\left(E-E_{F}\right)}{T} \frac{d T}{d x}\right\} \\
& \sigma_{n}(E)=\frac{2 q^{2}}{h} \lambda(E) \frac{M(E)}{A}\left(-\frac{\partial f_{0}}{\partial E}\right) \\
& \frac{2 q}{h} \lambda(E) \frac{M(E)}{A}\left(-\frac{\partial f_{0}}{\partial E}\right)\left\{\frac{\left(E-E_{F}\right)}{T}\right\}=\left(\frac{k_{B}}{q}\right) \sigma_{n}(E)\left\{\frac{\left(E-E_{F}\right)}{k_{B} T}\right\} \\
& J_{n x}(E)=\sigma_{n}(E) \frac{d\left(F_{n} / q\right)}{d x}+\left(\frac{k_{B}}{q}\right) \sigma_{n}(E)\left(\frac{E-E_{F}}{k_{B} T}\right) \frac{d T}{d x} \quad J_{n x}=\int J_{n x}(E) d E \\
& J_{n x}=\sigma_{n} \frac{d\left(F_{n} / q\right)}{d x}+[S G] \frac{d T}{d x} \quad \text { Lundstrom ECE-656 F09 }
\end{aligned}
$$

gradients in F_{n} and T

$$
J_{n x}=\sigma_{n} \frac{d\left(F_{n} / q\right)}{d x}+[S G] \frac{d T}{d x}
$$

$$
\sigma_{n}(E)=\frac{2 q^{2}}{h} \lambda(E) \frac{M(E)}{A}\left(-\frac{\partial f_{0}}{\partial E}\right) \quad[S G]=+\left(\frac{k_{B}}{q}\right) \int \sigma_{n}(E)\left(\frac{E-E_{F}}{k_{B} T}\right) d E
$$

the Landauer picture for bulk transport

outline

1) Transport in the bulk
2) The DD equation
3) Indicial notation
4) DD equation with B-field

gradients in F_{n} and T

constant temperature

$$
J_{n x}=\sigma_{n} \frac{d\left(F_{n} / q\right)}{d x}=\sigma_{n} E_{x}+\sigma_{n} \frac{k_{B} T}{q} \frac{1}{n} \frac{d n}{d x}
$$

$$
\begin{aligned}
& n(x)=N_{C} e^{\left(F_{n}(x)-E_{C}(x)\right) k_{B} T} \quad \text { (Boltzmann statistics) } \\
& F_{n}(x)=E_{C}(x)+k_{B} T \ln \left[n(x) / N_{C}\right] \\
& \frac{d F_{n}(x)}{d x}=\frac{d E_{C}(x)}{d x}+k_{B} T \frac{N_{C}}{n(x)} \frac{d n(x) / d x}{N_{C}}=q E_{x}+\frac{1}{n} \frac{d n}{d x}
\end{aligned}
$$

DD equation

$$
\begin{aligned}
& J_{n x}=\sigma_{n} E_{x}+\sigma_{n} \frac{k_{B} T}{q} \frac{1}{n} \frac{d n}{d x} \\
& \sigma_{n}=n(x) q \mu_{n} \\
& J_{n x}=n(x) q \mu_{n} E_{x}+k_{B} T \mu_{n} \frac{d n}{d x} \\
& \frac{D_{n}}{\mu_{n}}=\frac{k_{B} T}{q} \quad \text { Einstein relation }
\end{aligned}
$$

$$
\begin{aligned}
& J_{n x}=n(x) q \mu_{n} \mathcal{E}_{x}+q D_{n} \frac{d n}{d x} \\
& \text {-diffusive }(\lambda \ll L) \\
& \text {-constant temperature } \\
& \text {-non-degenerate }
\end{aligned}
$$

DD equation: questions

1) What do the DD equation and Einstein relation look like in the degenerate limit?
2) What is the general DD equation (and Einstein relation) in terms of FD integrals?
3) How does dimensionality affect the result? (i.e. what does the DD equation look like in 1D?)
4) How does bandstructure affect the result? (i.e. what is the DD

$$
J_{n x}=n(x) q \mu_{n} E_{x}+q D_{n} \frac{d n}{d x}
$$

-diffusive $(\lambda \ll L)$
-constant temperature
-non-degenerate equation for graphene?)

DD equation with temperature gradients

non-degenerate:

$$
[S G]=\sigma_{0}\left(\frac{k_{B}}{q}\right)\left[\ln \left(N_{C} / n\right)+2\right]
$$

outline

1) Transport in the bulk
2) The DD equation
3) Indicial notation
4) DD equation with B-field

the equations

$$
J_{x}=\sigma \frac{d\left(F_{n} / q\right)}{d x}+[S G] \frac{d T}{d x}
$$

$$
J_{x}^{Q}=-T[S G] \frac{d\left(F_{n} / q\right)}{d x}-\kappa_{0} \frac{d T}{d x}
$$

If the carrier density is uniform, then: $\frac{d\left(F_{n} / q\right)}{d x}=E_{x}$

$$
\begin{aligned}
& J_{x}=\sigma_{n} E_{x}+[S G] \frac{d T}{d x} \\
& J_{x}^{Q}=-T[S G] E_{x}-\kappa_{0} \frac{d T}{d x}
\end{aligned}
$$

the inverted equations

$$
\begin{aligned}
& \left.J_{x}=\sigma E_{x \in E}\right) \\
& J_{x}^{Q}=-T[S \\
& E_{x}=\rho J_{x} \\
& J_{x}^{Q}=\pi J_{x} \\
& \rho=1 / \sigma \\
& \pi=T S \quad \kappa_{e}=\left(\kappa_{0}-T \frac{[S G]}{\sigma}\right)
\end{aligned}
$$

tensors

$$
\begin{aligned}
& \vec{J}=[\sigma] \vec{E} \\
& {\left[\begin{array}{c}
J_{x} \\
J_{y} \\
J_{z}
\end{array}\right]=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]\left[\begin{array}{l}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right]} \\
& J_{i}=\sum_{j=1}^{3} \sigma_{i j} E_{j} \quad \text { "indicial notation" } \\
& J_{i}=\sum_{j=1}^{j=3} \sigma_{i j} E_{j} \equiv \sigma_{i j} E_{j} \quad \text { "summation convention" }
\end{aligned}
$$

coupled current equations

$$
\begin{gathered}
\vec{E}=[\rho] \vec{J}+[S] \vec{\nabla} T \\
\vec{J}_{Q}=[\pi] \vec{J}-\left[\kappa_{e}\right] \vec{\nabla} T
\end{gathered}
$$

$$
\begin{aligned}
& \mathcal{L}_{i}=P_{i j} J_{j}+S_{i j} \partial_{j} T^{T} \\
& J_{i}^{Q}=\pi_{i j}^{J}-K_{i j}^{e} \partial_{j} \Gamma
\end{aligned}
$$

For isotropic materials, the tensors are diagonal.

$$
\bar{E}_{i}=\rho_{0} J_{j}+S_{0} \partial_{j} T
$$

$$
[\rho]=\rho_{0}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

"Kronecker delta"

$$
\begin{gathered}
\rho_{i j}=\rho_{0} \delta_{i j} \\
\delta_{i j}=1 \quad(i=j) \\
=0 \quad(i \neq j)
\end{gathered}
$$

form of the tensors

$$
\begin{aligned}
& E_{i}=\rho_{0} J_{j}+S_{0} \partial_{j} T \\
& J_{i}^{Q}=\pi_{0} J_{j}-\kappa_{0}^{e} \partial_{j} T
\end{aligned}
$$

For isotropic materials, such as common, cubic semiconductors, the tensors are diagonal (under low-fields).

For a given crystal structure, the form of the tensors (i.e. which elements are zero and which are non-zero) can be deduced from symmetry arguments. (See Smith, Janak, and Adler, Chapter 4.)

The transport tensors can be readily computed by solving the Boltzmann Transport Equation (BTE).

magnetic fields

$$
\begin{aligned}
& E_{i}=\rho_{i j}(\bar{B}) J_{j}+S_{i j}(\bar{B}) \partial_{j} T \\
& J_{i}^{Q}=\pi_{i j}(\bar{B}) J_{j}-\kappa_{i j}^{e}(\bar{B}) \partial_{j} T
\end{aligned}
$$

Magnetic fields introduce off-diagonal elements, which lead to effects like the Hall effect.

The B-field transport tensors can be computed by solving the Boltzmann Transport Equation (BTE).

dealing with small magnetic fields

$$
\begin{aligned}
& \mathcal{E}_{i}=\rho_{i j}(\bar{B}) J_{j} \\
& \rho_{i j}(\bar{B})=\rho_{i j}(\bar{B}=0)+\frac{\partial \rho_{i j}}{\partial B_{k}} B_{k}+\frac{1}{2} \frac{\partial^{2} \rho_{i j}}{\partial B_{k} \partial B_{l}} B_{k} B_{l}+\ldots \\
& \rho_{i j}(\bar{B})=\rho_{i j}+\rho_{i j k} B_{k}+\rho_{i j k l} B_{k} B_{l}+\ldots
\end{aligned}
$$

cubic semiconductors

$$
\begin{array}{lllll}
\rho_{i j}=\rho_{0} \delta_{i j} & \rho_{i j l d} & \left(\begin{array}{llll}
\rho_{\alpha \alpha \alpha \alpha} & \rho_{\alpha \alpha \beta \beta} & \rho_{\alpha \beta \alpha \beta} & \rho_{\alpha \beta \beta \alpha}
\end{array}\right) \\
\rho_{i j k}=\rho_{1} \varepsilon_{i j k}=\rho_{0} \mu_{H} \varepsilon_{i j k} & \text { (alternating unit tensor) }
\end{array}
$$

alternating unit tensor

$$
\rho_{i j k}=\rho_{1} \varepsilon_{i j k}=\rho_{0} \mu_{H} \varepsilon_{i j k}
$$

$\vec{C}=\vec{E} \times \vec{B}$

$$
\vec{C}=\left[\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
E_{x} & E_{y} & E_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right]=\hat{x}\left(E_{y} B_{z}-E_{z} B_{y}\right)+\ldots
$$

$$
C_{i}=\varepsilon_{i j k} E_{j} B_{k}
$$

$$
\varepsilon_{i j k}=+1(i, j, k \text { cyclic })
$$

$$
C_{x}=\varepsilon_{x j k} E_{j} B_{k}
$$

$$
=-1(i, j, k \text { anti-cyclic })
$$

$$
=\varepsilon_{x y} E_{y} B_{z}+\varepsilon_{x z} E_{z} B_{y}
$$

$$
=0 \text { (otherwise) }
$$

$$
=\bar{E}_{y} B_{z}-\bar{E}_{z} B_{y} \quad \checkmark \text { Lundstrom ECE-656 F09 }
$$

Example: "Hall effect"

current in x-direction:

$$
I_{x}
$$

B-field in z-direction:

$$
\vec{B}=B \hat{z}
$$

Hall voltage measured in the y-direction:

$$
V_{H}<0 \quad \text { (n-type) }
$$

The Hall effect was discovered by Edwin Hall in 1879 and is widely used to characterize electronic materials. It also finds use magnetic field sensors.

Example: Hall effect

$$
\begin{array}{lr}
\bar{E}_{i}=\rho_{i j} J_{j}+\rho_{i j k} J_{i} B_{k}+\ldots+S_{i j} \partial_{j} T & \partial_{j} T=0 \quad \text { (isothermal) } \\
\bar{E}_{i}=\rho_{0} J_{i}+\rho_{1} \varepsilon_{i j k} J_{j} B_{k} & \text { (cubic semiconductor) } \\
E_{y}=\rho_{0} J_{y}+\rho_{1} \varepsilon_{y x z} J_{x} B_{z} & \text { "measures" the carrier } \\
\text { density } \\
E_{y}=0-\rho_{1} J_{x} B_{z} & \\
\frac{E_{y}}{J_{x} B_{z}} \equiv R_{H}=-\rho_{1}=-\rho_{0} \mu_{H}=-\frac{\mu_{H}}{n q \mu_{n}}=\frac{r_{H}}{(-q) n} \\
\left(R_{H}: \text { Hall coefficient) } \quad \text { (Hall factor, } 1<r_{H}<2\right)
\end{array}
$$

Hall effect

The Hall effect was discovered by Edwin Hall in 1879 and is widely used to characterize electronic materials. It also finds use magnetic field sensors.

integer quantum Hall effect

Fig. 1. Recording of V_{H} and V_{x} versus magnetic field for a GaAs device cooled to 1.2 K . The current is $25.5 \mu \mathrm{~A}$.
M.E. Cage, R.F. Dziuba, and B.F. Field, "A Test of the Quantum Hall Effect as a Resistance Standard," IEEE Trans. Instrumentation and Measurement," Vol. IM34, pp. 301-303, 1985

for more information

1) Lundstrom, Fundamentals of Carrier Transport, $2^{\text {nd }}$ Ed. Cambridge Univ. Press, 2000, Ch. 4
2) A.C. Smith, J.F. Janak, and R.B. Adler, Electronic Conduction in Solids, McGraw-Hill, New York, 1967

outline

1) Transport in the bulk
2) The DD equation
3) Indicial notation
4) DD equation with B-field
