

Introduction of Nano Science and Tech

Thermal and Electric Conduction in Nanostructures

Nick Fang

Course Website: nanoHUB.org

Compass.illinois.edu

First Midterm

- Friday, Sept 25 1-2PM
- Coverage:
 - Scaling
 - Quantum Effects
 - Molecular Dynamics of Transport
 - Nanoscale Solid Mechanics

A Review Lecture on Monday, Sept 21

Back to Constitutive Equations

• Hooke's Law $\sigma = E\varepsilon$

• Fourier's Law
$$q = -k \nabla T$$

- Fick's Law of Diffusion $\mathbf{J} = -D \nabla C$
- Newton's law on shear stress $\tau = -\mu (du/dy)$
- Ohm's Law $J = \sigma E$

How are they correlated in the nanoscale?

Calculating Current Density

Current = # electrons through A per second

$$I = e \times n(r,k) \times Adr/dt$$

Average number of electrons

Average velocity

Current density:

$$J = e \times n(r,k) \times v(r,k)$$

Power density:

$$Q = E(r,k) \times n(r,k) \times v(r,k)$$

Net Charge/Energy Flux

In order to find the net charge/energy flux (net current/power density), we need to consider all possible states at thermal equilibrium

$$J = \int e \times n(r,k) \times v(r,k)dk$$

$$Q = \int_{k}^{k} E(r,k) \times n(r,k) \times v(r,k)dk$$

Note: n(r,k)dk = D(r,k)p(r,k)dk

Density of States

Boltzmann Distributions

Boltzmann Transport Equation

$$\frac{\partial}{\partial t} p = -\frac{\mathbf{r}}{\mathbf{v}} \cdot \nabla_r p - \frac{\dot{F}}{\mathbf{h}} \cdot \nabla_k p$$

"Convection"

"Acceleration"

So how to estimate reaction?

Locally, the system that is away from thermal equilibrium has a tendency to relax toward equilibrium state:

$$\frac{\partial}{\partial t} p = -\frac{p - p_0}{\tau}$$
 Equilibrium Distribution

Current Density and Mobility

$$J = \int_{k} e \times n(r,k) \times v(r,k) dk$$

$$J = \int_{E} e \times D(r, E) \times v(r, E) \times (\tau v \cdot (\nabla_{r} p_{0} + \frac{\dot{F}}{h} \frac{\partial p_{0}}{\partial E})) dE$$

Assume F along z direction, we find:

$$J = \frac{\partial}{\partial z} \left(e^{\frac{k_B T n_e \langle \tau \rangle}{m}} \right) + F_z \frac{e n_e \langle \tau \rangle}{m}$$

Electron diffusion

Migration under external field

Coupled Heat and Electron Conduction

Seebeck effect (1821)
 (Heat to electricity)

$$S = -\frac{\Delta V}{T_2 - T_1} \quad [V/^{\circ}K]$$

Peltier effect (1834)
 (Electric cooling)

Thermoelectric Cooling

- –No moving parts
- -Environmentally friendly
- No loss of efficiency with size reduction
- -Can be integrated with electronic circuits (e.g. CPU)
- Localized cooling with rapid response

Koolatron Kool Sport Cooler

Major Opportunities in Energy Industry

- Large scale waste heat recovery of industrial processes
 - Benefit from higher energy costs and reduction of fossil fuel pollution

- Hybrid solar cell/thermoelectric/battery
 - Day & night operation
 - Flexible, easy deployment

Industrial Waste Heat Recovery

Automobile Exhaust Waste Heat Recovery

Principle of Thermoelectric Effect

Electron Current by BTE:

$$\mathbf{J}_{e} = \sigma_{e} \mathbf{E} + \frac{k_{B} \sigma_{e}}{e} \nabla \left(T_{e} \ln n_{e} \right)$$

Thermoelectricity:

$$\mathbf{E} = \frac{k_B}{e} \nabla \left(T_e \ln n_e \right)$$

Seebeck coefficient:

$$S = \frac{\partial \mathbf{E}}{\partial T} = -\frac{k_B}{e} \left[\ln n_0 + \frac{E_a}{k_B T} \right]$$
- Density of electrons (n)

- Activation energy (Ea)

Thermoelectric Figure of Merit

Electronic current

$$\mathbf{J}_e = \sigma_e(\mathbf{E} + S\nabla T)$$

Electronic current

$$\mathbf{J}_{Q} = \kappa \nabla T - \pi \sigma \mathbf{E} = \kappa \nabla T - (ST)\sigma \mathbf{E}$$

Comparison of Different Materials

Material	Typical Seebeck Coefficient (μV/*K)
Metal	< 10
Semicondu ctors	200~600 (Heavy Doping)
lonized Hydrogels	250~400
Electrolyte	200-1000 (AgBr/CdBr ₂)

$$ZT = \frac{\sigma S^2 T}{\kappa}$$

Challenges in Efficiency

Existing thermo-electric devices operate in limited temperature

range and suffer from lower efficiency

 $ZT = \frac{\sigma S^2 T}{\sigma S^2} < 1$

from G. Chen et al, JOURNAL OF HEAT TRANSFER, 2002(124)242-252

Nanoscale Thermoelectricity?

Difficulties in increasing ZT in bulk materials:

$$S \uparrow \iff \sigma \downarrow$$

$$\sigma \uparrow \iff S \downarrow \text{ and } \kappa \uparrow$$

- \Rightarrow A limit to Z is rapidly obtained in conventional materials
- \Rightarrow So far, best bulk material (Bi_{0.5}Sb_{1.5}Te₃) has $ZT \sim 1$ at 300 K

Low dimensions give additional control:

- Enhanced density of states due to quantum confinement effects \Rightarrow Increase S without reducing σ
- Boundary scattering at interfaces reduces κ more than σ
- Possibility of materials engineering to further improve ZT

New Directions for Nano- Thermoelectricity

• Thermal conductivity can be significantly reduced by the preferential scattering of phonons at the interfaces

State-of-the-Art in Thermoelectrics

PbTe/PbSeTe	Nano	Bulk
S²σ (μW/cmK²)	32	28
k (W/mK)	0.6	2.5
ZT (T=300K)	1.6	0.3
Harman et al., S	Science (2003)

Bi ₂ Te ₃ /Sb ₂ Te ₃	Nano	Bulk
S ² σ (μW/cmK ²)	40	50.9
k (W/mK)	0.6	1.45
ZT (T=300K)	2.4	1.0

Venkatasubramanian et al., Nature, 2002.

A Natural Thermo-electric Sensor in Shark

Brown, Nature, 2003

Extreme sensitivity to temperature changes ~0.001°C!!

97% H2O
Sulfated glycoprotein
Na, Ca, Cl, and K ions.

Hornet skin: a natural heat pump?

IR image of the hornets

Hornets keep their body temperature lower by 3-4 degrees when they are active outside the nest in daytime, where the ambient temperature can be as high as 40–60 C.

(Ishay et al, PRL, 2003)

Hornet skin: a natural heat pump?

Indirect measurement suggests

- □ σ=0.16 S/m and
- S~ 2mV/K!
- \square κ ~ 0.01W/(mK)

Shimony and Ishay, J. Theo. Bio, 1981

Additional Readings

- G. Chen and A. Shakouri, "Heat Transfer in Nanostructures for Solid-State Energy Conversion", JOURNAL OF HEAT TRANSFER, 2002(124)242-252
- J.S. Ishay et al, "Natural Thermoelectric Heat Pump in Social Wasps", Physical Review Letters, 2003 (90)218102.
- Theme Issue, "Harvesting Energy through Thermoelectrics: Power Generation and Cooling", MRS Bulletin, March 2006 (36).