Short Course on Molecular Dynamics Simulation

> Lecture 6: Neighbor Lists

Professor A. Martini Purdue University

High Level Course Outline

- 1. MD Basics
- 2. Potential Energy Functions
- 3. Integration Algorithms
- 4. Temperature Control
- 5. Boundary Conditions
- 6. Neighbor Lists
- 7. Initialization and Equilibrium
- 8. Extracting Static Properties
- 9. Extracting Dynamic Properties
- 10. Non-Equilibrium MD

- Most time-consuming part of the simulation is calculating interaction forces
- With a truncated potential, zero force at $r_{ii} > r_{cut}$
- Calculating force at $r_{ij} > r_{cut}$ just wastes time
- Solutions
 - Neighbor lists
 - Cell lists
 - Combination of the above

Neighbor Lists

- LJ fluid with $\rho\sigma^3 = 0.8$
- Typically ~75 atoms with $r_{ij} < r_{verlet}$
- Need only track j > i
- So on average the neighbor list of atom *i* contains ~40 atoms

Neighbor Lists

Neighbor Lists

- Updating neighbor lists
 - Typical update frequency ~ 10-20 timesteps
 - Too high \rightarrow method inefficient
 - Too low \rightarrow forces calculated incorrectly
- Correcting for inherent error
 - Some fraction of the potential energy is always ignored → add at simulation end

$$E_{correction} = 2\pi\rho N \int_{r_{verlet}}^{\infty} r^2 U(r) dr$$
$$E_{correction,LJ} = 8\pi\rho N \varepsilon \left[\frac{\sigma^{12}}{9r_{verlet}^9} - \frac{\sigma^6}{3r_{verlet}^3} \right]$$

Cell Lists

- Simulation box divided into cells with size equal to or slightly larger than r_{cell}
- Each particle only interacts with others in its own cell or adjacent cells

Comparison of Methods

Verlet List

$$n_{verlet} = \frac{4}{3}\pi\rho r_{verlet}^{3}$$
$$r_{verlet} = 2.7\sigma$$

$$n_{cell} = 27 \rho r_{cell}^3$$

 $r_{cell} = 2.5\sigma$

$$n_{cell} = 5n_{verlet}$$

Comparison of Methods

- Verlet List scales with N^2
 - Loop over i and j
 - Calculate distance between i and j
 - If less than r_{verlet} add to neighbor list
- Cell List scales with N
 - Identify cell boundaries
 - Loop over i and the number of cells
 - If i is in a given cell add to cell list