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Coherent Transport
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• In the last few lectures we’ve been 
discussing coherent transport where electrons 
go through the channel without loosing energy 
or dissipating heat. As the figure below shows 
once an electron gets onto to the drain contact 
it looses its energy and relaxes down whereby 
it generates heat. On the other hand the hole 
left in drain floats up to the top. Describing 
these processes are very difficult. We’ve 
bypassed them by stating that certain forces 
keep holes and electrons in equilibrium with 
the Fermi levels in the contacts.
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What We Expect From 
Ohm’s Law

02:34

• What we’ve discussed thus far in this 
class was current flow through a small 
device using the Hamiltonian and the self 
energy matrices. 
• Today we want to see how one 
eventually gets Ohm’s law as the device 
gets larger and larger. 
• Transmission is given by: 
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• When you think of a conductor that has 
length L and area A, Ohm’s law predicts that 
conductance ~ A/L. 
• For our expression of current, we know that 
the number of modes M will increase as the 
area is increased. So the cross sectional 
dependence can be seen easily.
• What is harder to see is that: 
• So if the probability of an electron getting 
form one side of the device to the other side 
is inversely proportional to the length of the 
conductor, then we get the same result as 
Ohm’s law. For short devices, there is no 
scattering and T=1. How ever for longer 
devices, electron wave function is more 
spread over the channel; hence an electron 
might get thrown backwards to the source 
once it has gotten into the channel.
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Transmission Through Two 
Scatterers

07:33

• Under certain conditions: 

• is called the mean free path and it 
can be defined as:
• A conductor that has a length of      , 
has a transmission probability of ½.

• The question now is that where is the 
above expression for T is coming from.
•To investigate this consider a conductor 
with two different scatterers with 
transmission probabilities of T1 and T2 
respectively:
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• Thinking of electrons as particles, for 
transmission through 2 scatterers we have:

• This is the Geometric series:
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Transmission Versus 
Length

17:50

• Let’s write 1/T instead of T: 

• Now the question is how transmission is 
related to the length of a long conductor.

• Think about the wire with length L:
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• Our function must satisfy the above 
relationship. If you separate your 
conductor into two sections of equal length 
we should have:

• The following equation for T will satisfy 
the above relationship 

• To check we do:
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100% Transmission in the 
Presence of Scatterers

23:59

• This picture is not as easy if we think of 
electrons as waves and our relationship 
will not compensate for all the physics 
that is inherent in the problem.

• Consider the case were we have two 
scatterers; from particle point of view and 
using the relationship that we’ve derived 
for transmission, transmission should 
reduce by a factor of 2 when we go from 
one to two scatterers.

• How ever this is not the case.

• Looking at the problem Quantum 
mechanically, it is interference between the 
waves that changes the picture. For 
example if the distance between the two 
scatterers is quarter of a wavelength, the 
two reflections cancel each other and this 
way we can even get  more transmission 
(Constructive interference). In this case 
transmission will be 100% and there would 
be no reflection. This technique has been 
used to eliminated reflection from lenses:
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Conductance Fluctuations
29:40

• In 1980’s people started experimenting 
with conductors that were small enough to 
have only a few scatterers. Notice that for 
long devices with many scatterers, Ohm’s 
law follows automatically. However what 
people discovered for small conductors 
was:

• To understand this consider a device 
which has some impurities that cause 
scattering.

• Then consider the dispersion relation:

• Increasing the gate voltage causes greater 
number of electrons. This in turn is reflected in 
the E-k diagram with a higher Fermi level. As 
the result the k (wave vector) of the electrons 
close to Fermi energy changes; Which means 
the wavelength of the electrons are changing. 
• What happens is that for some wavelengths 
there will be constructive interference and for 
some there will be destructive interference . As 
the result there are fluctuations in the 
conductance like the ones drawn on the figure.
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The Conceptual Scattering 
Contact (Buttiker Probe)

41:12

• Scattering processes can be taken into 
account in an indirect way by assuming a 
conceptual (not real) scattering contact. 
Electrons get in and get out of this 
contact with their phases randomized.
• Remember the old expression for 
current:

• When the third contact is introduced the 
new equation for current at a terminal can 
be written as:

• The possible transmissions for the three 
terminal device is shown by the arrows in 
the figure on the left.   
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Scattering Processes
45:57

• Notice that we do know the where the Fermi Levels μ1 and μ2 lie; however we don’t 
know the position of μ3. The way we can find it is by knowing that the current going to the 
third contact is 0. So we adjust μ3 in way to get I3=0.

• This is probably the easiest way to include the scattering processes into the model. Notice 
that till now we’ve been considering very small devices for which the transport was ballistic 
and there was no scattering present. The method above is useful for larger devices.
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