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» To achieve this, scientists started with
the simplest material possible, namely
the Hydrogen atom. a
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» A natural way to think about this atom
is that the positive charge attracts the
negative charge and the electron
(negative charge) will circle around the

proton kind of like rotation of earth
around sun.
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* As we've been discussing, any material that

forms the channel in a transistor can be
visualized in terms of its energy levels.
Current flow is introduction of an electron top
one side of the channel and its going out
from the other side. Any time an electron
enters the channel, it has to go into an empty
level. Talking out an electron involves and
electron getting out of a filled level.

» Given a set of energy levels or Density of
States (DOS), we've talked about the |-V
characteristics of a device. What we want to
understand now is how to model such energy
levels / DOS.

87e, I n* 8rze,a,




 What we had was:
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» The basic idea for any method of
numerical solution to the differential
equation is to turn it into a matrix
equation. We’ll consider the finite
difference method here. We'll end up

with: [ &, 7 _ T &,
I I

» Going from H atom to more complicated
atoms, we have to consider the potential
due to other electrons in addition to the
nucleus potential...
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 This equation has to be solved self
consistently: | Schrddinger |

u | ~n(m)

Poisson |
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* Finite difference
method gets out of
hand for 3D solids.
Calculating the
eigenvalues of huge
matrices resulting from
FDM is hard if not
impossible for
computers.

* Thus we try to solve
the problem in another
way using the idea of
basis functions.

« Schrodinger Equation: H

op

Whereby H,, is
converted into a matrix
and @ isa
wavefunction
represented spatially
point by point

-‘Da can be written as a linear combination of a set of
basis functions: _ _
(Da(r): Z ¢mum (r)
m

Where ¢m are coefficients and um(r) are basis
functions. So we can represent the wavefunction as a
column vector with expansion coefficients as its

elements: OF)>{h & o o Byl




* The principle of bandstructure helps us
to find the eigenvalues of a periodic
matrix. This is important for us because
solids that we are interested in have
periodic structures. Consider this
example: - t 0 0 o0
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» Regardless of the details of the problem,
the matrix that we write will be periodic.

» Notice that as long as every row looks the
same, the principle of bandstructure applies
regardless of how each row looks. The nth

row is:
E¢n = t¢n—l + g¢n + t¢n+l (1)

 This solution satisfies the Schrodinger
equation if the E-k relationship below is met.

¢n _ einka¢0 (2)
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* As long as the above E-k relationship is
met, the solution we chose will satisfy the
Schrédinger equation.




e Often we are interested in low » For confined structures we can categorize the
dimensional structures such as eigen energies as follows:

carbon nano-tubes. A low :
dimensional structure is that for Bulk Solid: E(kx’ ky’ kz)

which one or more dimension is Q. Well: E, (k,.Kk,)

II.
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* For the most part, if one or Q.Dot:
more dimension is on the nm
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* Next we'd like to explain how 2 is related to lifetime.

* Let’s start with Schrodinger equation: (suppose the channel is isolated form the contact)
. d : =
Ihd—gt” =Hy, Let H =g, theny(t) canbewritten as /(t) = (0)e *

 Remember that we described the effect of the contact by the term 2 . If add this to H we

get: —lg, —IX

Y —HyH =e+3, then y(t) =y (O)e " e "

Ih—— =Ry, =&+ 2, en = e e

o If 2 isreal, then there has been a shift in the energy and not much has changed. But if 2
has an imaginary part, then a DECAY factor is involved.

w(t):l//(O)e_;te_’;Zt\ “ie'y vy
v —eirey W) =w(0)e " e ¥ =>\w(t)f=\w(0)\z'
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* The electron density is the magnitude of psi*2 (see above). The expression for electron
density shows the significance of the imaginary part of 2 . If there is not a coupling between
the contact and channel the electron density remains constant. But if there is an imaginary
part, the electron density has finite lifetime and it decays with time.




» We just learned that the imaginary part of 2
results in a finite lifetime. Another aspect of this
is broadening. Early on in the course we
discussed that if we connect the channel to a
contact then, then the levels in the channel gets
broadened. We stated that the a single sharp
energy level looses a fraction of its value but
then some fraction of energy levels from the
contact spill over in the channel. As the result we
had a broadening. The important point was that
what the channel level looses at a particular
energy, it gains the same amount at other
energies so that the sum of the new distribution
of energy levels adds up to 1 which is the value it
had before connecting the channel to the
contact.

* It is very important to keep broadening in the
whole picture. Without it the value of calculated
current will be wrong.
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G(E)=(EI-H-%,-%,)
A(E)=i(G-G")
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Local DOS in th
device near the
source contact

e

Local DOS in the
evice near the
drain contact

» The general definition of DOS is:
D(E)=>Y J(E-¢,)

» What the above equation tells us is the
average number of states over the entire
solid. However for nanostructures we are
interested in local density of states. Notice
that even for large solids the density of
states changes on atomic scale. This is
important because current depends on
density of states. In the figure below when
the tip is on top of atoms, density of states is
higher and there is more current flow.
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eScattering processes can be taken into
account in an indirect way by assuming a
conceptual (not real) scattering contact.
Electrons get in and get out of this contact
with their phases randomized.

 Remember the old expression for
current:

=2 JaET(EX,(E) - £,(E))

* When the third contact is introduced the
new equation for current at a terminal can
be written as:

2 -
Ii:qudEZj:Tij(E)(fi—fj)

» Notice that we do know the where the
Fermi Levels ¢ 1 and u 2 lie; however we
don’t know the position of ¢ 3. The way we
can find it is by knowing that the current
going to the third contact is 0. So we adjust
# 3 in way to get 13=0.

20 —
, =FjdEZJ:T3,-(E)(f3— f)=0




* The first thing we’d like to know is under
what conditions coulomb blockade is
important and has to be accounted for in
modeling.

» Coulomb blockade becomes important
when the coupling to the contacts and kT
become much less than the single electron

charging energy: Y= + /2

7, kT <<U,

* Notice that the absence or presence of
an electron in the channel results in raising
or lowering of the level. The way we can
account for this effect is:

U=U_+U,An

 UO tells how much the potential changes
if the number of electrons changes by 1.




» To get an order of magnitude estimation for UQ,
consider a sphere of charge.

u=_9
AR

1.6x10*coul

4x%3.14%8.85x107** E><1o—7m

m
U =~14meV

 This is in the order of KT which is 25 meV at room
temperature.

R was taken to be 1000 A. If larger, then UO will
even be smaller. This means that anytime an
electron is added to the channel the amount of
potential doesn’t change much.

» We can see that for small devices, UO will be
larger and can affect the physical picture.

» Coulomb blockade becomes
important if the following condition
IS NOT the case
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