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Model of a Nano Transistor
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Number of Electrons/ 
Current
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Inclusion of Broadening
06:02
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Energy Levels
(Hydrogen Atom)

08:34

• As we’ve been discussing, any material that 
forms the channel in a transistor can be 
visualized in terms of its energy levels. 
Current flow is introduction of an electron top 
one side of the channel and its going out 
from the other side. Any time an electron 
enters the channel, it has to go into an empty 
level. Talking out an electron involves and 
electron getting out of a filled level.
• Given a set of energy levels or Density of 
States (DOS), we’ve talked about the I-V 
characteristics of a device. What we want to 
understand now is how to model such energy 
levels / DOS.

• To achieve this, scientists started with 
the simplest material possible, namely 
the Hydrogen atom.

• A natural way to think about this atom 
is  that the positive charge attracts the 
negative charge and the electron 
(negative charge) will circle around the 
proton kind of like rotation of earth 
around sun.
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Finite Difference Method
10:07

• What we had was: 

• The basic idea for any method of 
numerical solution to the differential 
equation is to turn it into a matrix 
equation. We’ll consider the finite 
difference method here. We’ll end up 
with:

• Going from H atom to more complicated 
atoms, we have to consider the potential 
due to other electrons in addition to the 
nucleus potential…
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• This equation has to be solved self 
consistently: 
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Basis Functions
15:20

• Schrödinger Equation:  HopФα=EαФα

Whereby Hop is 
converted into a matrix 
and Фα is a 
wavefunction
represented spatially 
point by point

• can be written as a linear combination of a set of 
basis functions:

Where        are coefficients and are basis 
functions. So we can represent the wavefunction as a 
column vector with expansion coefficients as its 
elements:
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• Finite difference 
method gets out of 
hand for 3D solids. 
Calculating the 
eigenvalues of huge 
matrices resulting from 
FDM is hard if not 
impossible for 
computers.
• Thus we try to solve 
the problem in another 
way using the idea of 
basis functions.



Periodicity and The 
Principle of Bandstructure

18:51

• The principle of bandstructure helps us 
to find the eigenvalues of a periodic 
matrix. This is important for us because 
solids that we are interested in have 
periodic structures. Consider this 
example:

• Regardless of the details of the problem, 
the matrix that we write will be periodic.

• Notice that as long as every row looks the 
same, the principle of bandstructure applies 
regardless of how each row looks. The nth 
row is:

• This solution satisfies the Schrödinger 
equation if the E-k relationship below is met.

• 2 in 1 

• As long as the above E-k relationship is 
met, the solution we chose will satisfy the 
Schrödinger equation.
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Subbands
20:59

• For confined structures we can categorize the 
eigen energies as follows:

• Often we are interested in low 
dimensional structures such as 
carbon nano-tubes.  A low 
dimensional structure is that for 
which one or more dimension is 
very small.

• For the most part, if one or 
more dimension is on the nm 
scale (≈100 atoms) the 
conventional E-k diagram is not 
sufficient
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Device Connected to 
Contacts

23:05
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Finite Lifetime Aspect of 
Σ=σ – iγ/2

24:15

• Next we’d like to explain how Σ is related to lifetime.
• Let’s start with Schrödinger equation: (suppose the channel is isolated form the contact)

• Remember that we described the effect of the contact by the term Σ . If add this to H we 
get:

• If Σ is real, then there has been a shift in the energy and not much has changed. But if Σ
has an imaginary part, then a DECAY factor is involved.

• The electron density is the magnitude of psi^2 (see above). The expression for electron 
density shows the significance of the imaginary part of Σ . If there is not a coupling between 
the contact and channel the electron density remains constant. But if there is an imaginary 
part, the electron density has finite lifetime and it decays with time.
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Broadening Aspect of 
Σ=σ – iγ/2

25:43

• We just learned that the imaginary part of Σ
results in a finite lifetime. Another aspect of this 
is broadening. Early on in the course we 
discussed that if we connect the channel to a 
contact then, then the levels in the channel gets 
broadened. We stated that the a single sharp 
energy level looses a fraction of its value but 
then some fraction of energy levels from the 
contact spill over in the channel. As the result we 
had a broadening. The important point was that 
what the channel level looses at a particular 
energy, it gains the same amount at other 
energies so that the sum of the new distribution 
of energy levels adds up to 1 which is the value it 
had before connecting the channel to the 
contact.
• It is very important to keep broadening in the 
whole picture. Without it the value of calculated 
current will be wrong.
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Green’s Function Approach
26:50
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Why Local Density of 
States?

28:26

Local DOS in the 
device near the 
source contact

Local DOS in the 
device near the 
drain contact

A • The general definition of DOS is:

• What the above equation tells us is the 
average number of states over the entire 
solid. However for nanostructures we are 
interested in local density of states. Notice 
that even for large solids the density of 
states changes on atomic scale. This is 
important because current depends on 
density of states. In the figure below when       
the tip is on top of atoms, density of states is 
higher and there is  more current flow.
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From Numbers to Matrices
32:26
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36:22
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• Basic Definition: phonons are the 
lattice vibrations (sound) which 
propagate through a solid or molecule
• For example, hydrogen molecules 
vibrate about an equilibrium bond 
distance, Req, with an intensity 
proportional to temperature much like a 
spring mass system

Phonons / 
Scattering



The Conceptual Scattering 
Contact (Buttiker Probe)

41:39

•Scattering processes can be taken into 
account in an indirect way by assuming a 
conceptual (not real) scattering contact. 
Electrons get in and get out of this contact 
with their phases randomized.
• Remember the old expression for 
current:

• When the third contact is introduced the 
new equation for current at a terminal can 
be written as:

• Notice that we do know the where the 
Fermi Levels μ1 and μ2 lie; however we 
don’t know the position of μ3. The way we 
can find it is by knowing that the current 
going to the third contact is 0. So we adjust 
μ3 in way to get I3=0.
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Coulomb Blockade
44:21
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• The first thing we’d like to know is under 
what conditions coulomb blockade is 
important and has to be accounted for in 
modeling.
• Coulomb blockade becomes important 
when the coupling to the contacts and kT 
become much less than the single electron 
charging energy:

• Notice that the absence or presence of 
an electron in the channel results in raising 
or lowering of the level. The way we can 
account for this effect is:

• U0 tells how much the potential changes 
if the number of electrons changes by 1.
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46:00

• To get an order of magnitude estimation for U0, 
consider a sphere of charge.

• This is in the order of kT which is 25 meV at room 
temperature.
• R was taken to be 1000 Ǻ. If larger, then U0 will 
even be smaller. This means that anytime an 
electron is added to the channel the amount of 
potential doesn’t change much.
• We can see that for small devices, U0 will be 
larger and can affect the physical picture.
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• Coulomb blockade becomes 
important if the following condition 
is NOT the case 

0, UTkB <<γ

Coulomb Blockade
Order of Magnitude Estimation 
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We Have Learned…
49:00
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