OPTICS: MULTIPHOTON **MICROSCOPY**

presented by

Dr. K. C. Toussaint, Jr. 2009 Nano-Biophotonics Summer School University of Illinois at Urbana-Champaign

LECTURE OUTLINE

- Background: atoms and molecules
- Photon interaction with atoms
- **Two-photon fluorescence microscopy**
- **Second-harmonic generation microscopy**

BACKGROUND

 $\mathbf I$

- Light interaction with matter is mediated through electric charges
- Time-varying *E*-field exerts forces on atoms, molecules, and solids
- Interaction is governed by rules of quantum mechanics

6/4/09 2009 Nano-Biophotonics Summer School 5

• Vibrating electric charges can absorb and emit light

6/4/09 2009 Nano-Biophotonics Summer School 6 BACKGROUND Atoms Molecules Solids Particles

SCHRODINGER EQUATION

• Describes behavior of a particle of mass *m*

$$
\frac{-\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},t) + V(\mathbf{r},t)\Psi(\mathbf{r},t) = -j\hbar \frac{\partial \Psi(\mathbf{r},t)}{\partial t}
$$
\n
$$
\longrightarrow_{\text{complex}}
$$
\n
$$
\longrightarrow_{\text{potential}}
$$

• Environment (including interaction with light) is characterized by the potential

Nano-Biophotonics Summer

- Used to determine allowed energy levels *E*
- More complex systems (e.g., multiple particles) require more complex potential

ATOMS

- Energy levels determined by potential energies of electrons (depends on proximity to atomic nucleus and other electrons, as well as forces related to OAM and SAM)
- Simple example is Hyrdogen (single nucleus and single electron)

6/4/09 2009 Nano-Biophotonics Summer School 9

• Also used in lasing medium (e.g., He-Ne, Ar⁺, Kr⁺)

MOLECULES

• Combination of 2 or more atoms

Ι

Ī

- Energy levels determined by the potential energies associated with forces that bind the atoms
- 2 major types of binding are ionic (forms permanent dipole moments) and covalent (no permanent dipole moment)
- Stable when sharing of valence electrons by atoms results in reduction of overall energy

6/4/09 2009 Nano-Biophotonics Summer School 10

MOLECULES

- 3 types of interactions dictate energy levels
	- rotational transitions \rightarrow microwave and far-IR region
	- vibrational transitions \rightarrow IR region
	- electronic transitions \rightarrow visible and UV region
- Used to make a variety of molecular lasers from gases (e.g., $CO₂$, N₂) to dyes in a solvent (e.g., Rhodamine-6G, Polymethine)

6/4/09 2009 Nano-Biophotonics Summer School 11

INTERACTIONS OF PHOTONS WITH ATOMS

- Atom can emit or absorb a photon by undergoing upward or downward transition between energy levels, respectively
- We will consider what happens when an atom (with energy levels E_1 and E_2) is placed in an optical resonator
- Atom interacts with photons of a specific mode of frequency v_0 where $hv_0 = E_2 - E_1$

6/4/09 2009 Nano-Biophotonics Summer School 2009 12

Studied using QED

INTERACTIONS OF PHOTONS I WITH ATOMS

6/4/09 2009 Nano-Biophotonics Summer School 13

- 3 types of interactions
- Spontaneous emission
- Absorption
- Stimulated emission

$\boxed{1}$ SPONTANEOUS EMISSION

6/4/09 2009 Nano-Biophotonics Summer School 24/09

- Atom is initially in upper energy level (2) Atom decays spontaneously to lower
- Transition releases photon of energy *h*ν ~ $hv_{0} = E_{2} - E_{1}$
- Photon energy is added to energy of electromagnetic mode

energy level (1)

• Independent of the # of photons that may already be in the mode

Image Source: Fund

 $\frac{h\nu}{n\nu}$

LUMINESCENCE

- Atomic or molecular systems can be raised to higher energy levels through excitation from heat, light, electronic impact, sound
- Nonthermal excitation results in a radiation process called luminescence

6/4/09 2009 Nano-Biophotonics Summer School 27

PHOTOLUMINENSCENCE

6/4/09 2009 Nano-Biophotonics Summer School 18

• Light emission is induced by absorption of photons

Ί

- Glow emitted by some materials after exposure to UV
- Spin-forbidden transition (lifetime is relatively long ~ 1ms to 10s)
- Also occurs with some quantum dots
- Referred to as fluorescence when
transition is spin-allowed (lifetime relatively short \sim 1 to 20 ns)

 $\overline{\mathbf{I}}$

Colloidal CdSe quantum dots exposed to UV light

Image Source: Fundamental

Image Source: Handbook of Biological Confocal Microscopy

FLUORESCENCE MICROSCOPY^{II}

- Fluorescence microscopy is commonplace in investigations of living cells and tissues
- Needs input optical energy of the right frequency and (usually) exogenous or endogenous fluorescent probe
- Can be easily carried out using standard microscope architecture

6/4/09 2009 Nano-Biophotonics Summer School 19

• Provides high contrast and specificity

1PE FLUORESCENCE **MICROSCOPY** Carried out at excitation wavelengths (blue region) that could result in photodamage of biospecimens Risk of photobleaching fluorophores in entire volume • No axial sectioning w/out the 400 T00 2000 λ (nm) use of a confocal pinhole Limited penetration depth $(-50$ µm) into tissues due to absorption from water, melanin, hemoglobin

6/4/09 2009 Nano-Biophotonics Summer School 2009 2009 2009 Nano-Biophotonics Summer School

NONLINEAR MICROSCOPY

• Nonlinear methods – approaches whereby output intensity is proportional to *I ⁿ*, where *I* is the input intensity and *n* is the number of photons involved in the interaction

6/4/09 2009 Nano-Biophotonics Summer School 21

- Permits "optical histology"
- Deeper penetration depths (~600 μ m compared to 50 μ m)
- Reduced photodamage
- Reduced photobleaching

NONLINEAR MICROSCOPY

- 2ph-, 3ph-microscopy
- 2nd-, 3rd-harmonic generation microscopy

6/4/09 2009 Nano-Biophotonics Summer School 22

• CARS microscopy

HISTORY

- First experimental demonstration in 1961 was of secondharmonic generation in quartz crystal
- Followed by 2-photon excitation in CaF²:Eu²⁺ (also in 1961)
- Development of mode-locked lasers made it practical for microscopy tool as demonstrated by Denk *et al.* in 1990

6/4/09 2009 Nano-Biophotonics Summer School 25

BASIC CONCEPT

- Incoherent nonlinear microscopy techniques: 2-, 3-, *n*photon microscopy
- Based on molecular absorption
- Emission is isotropic and unpolarized
- Phase information is lost

Ί

Coherent nonlinear microscopy techniques: secondharmonic generation (SHG), third-harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS) microscopy

- Based on photon scattering
- Emission is directional and polarized
	- Phase information is maintained

PROBABILITY FOR MPA

Π

• Probability that a fluorophore at the center of focus of a lens will simultaneously absorb 2 photons (paraxial approx)

• For optimal fluorescence generation and avoiding saturation, p_a <1, F_p = 100 MHz, <*P*> = 1-10mW, assuming τ_p =100 fs, and $NA = 1.4$

6/4/09 2009 Nano-Biophotonics Summer School 29

SPATIAL CONFINEMENT

 $\overline{\mathbb{I}}$

- \cdot For tightly-focused beam, p_a outside focal region falls off with z^{2n} , where *z* is the distance from the focal plane
- Results in spatial confinement of fluorescence

6/4/09 2009 Nano-Biophotonics Summer School 30

• Permits axial sectioning

ABSORPTION CROSS-SECTION

- Units of Goppert-Mayer [1 GM=10-58 m⁴s/photon]
- Difficult to predict from 1PE cross-section
- Measured experimentally (still challenging)
- Rule of thumb is that 2PE cross-section is peaked at 2x 1PE λ

6/4/09 2009 Nano-Biophotonics Summer School 31

SELECTION RULES

- Selection rules differ for 2PE compared to 1PE
- Selection rules for 1PE for isolated atoms are forbidden for 2PE
- Usually not true for complex dye molecules due to reduced symmetry and molecular vibrations

PULSE WIDTH

Ί

- Reducing pulse width comes with a tradeoff
- Really short pulses (< 100 fs) are sensitive to spreading due to group velocity dispersion

6/4/09 2009 Nano-Biophotonics Summer School 33

• Usually ~ 100 fs works very well

SOME COMMON FLUORESCENT I MOLECULES TABLE 1 Properties of some common fluorescent molecul

INTENSITY POINT SPREAD FUNCTION

- Useful to look at intensity PSF, $|h(\rho, z)|^2$
- We can break this down into $|h_{ii}(\rho, z)|^2$ and $|h_{def}(\rho, z)|^2$ for illumination and detection, respectively
- In general, $|h_{ii}(p,z)|^2$ and $|h_{def}(p,z)|^2$ are not the same b/c of optics
- Also, for fluorescence microscopy λ_{ijl} and λ_{det} are not the same

SPATIAL RESOLUTION

• Spatial resolution involves measure of PSF (e.g., Rayleigh criterion)

λ corresponds to wavelength of detected light

09 Nano-Biophotonics Summer

SPATIAL RESOLUTION

• Assuming, $\lambda_{\text{det}} = 520$ *nm*

 $\mathbf I$

• Strength of MPFM comes from its axial sectioning capabilities in thick, highly-scattering, specimens

2009 Nano-Biophotonics Su

SHG SIGNAL POWER

volume

6/4/09 2009 Nano-Biophotonics Summer School 50

COMPARISON TO TWO-PHOTON I FLUORESCENCE MICROSCOPY

- Same hardware requirements (\$\$\$)
- SHG signal is coherent while fluorescence is incoherent (polarization and direction)
- Same spatial resolutions (applicable to live imaging)

- SHG is generally label free
- Less heating to specimen since no absorption

