OPTICS: MULTIPHOTON MICROSCOPY

presented by

Dr. K. C. Toussaint, Jr. 2009 Nano-Biophotonics Summer School University of Illinois at Urbana-Champaign

LECTURE OUTLINE

- Background: atoms and molecules
- Photon interaction with atoms
- Two-photon fluorescence microscopy
- Second-harmonic generation microscopy

009 Nano-Biophotonics Su

BACKGROUND

]

- Light interaction with matter is mediated through electric charges
- Time-varying *E*-field exerts forces on atoms, molecules, and solids
- · Interaction is governed by rules of quantum mechanics
- · Vibrating electric charges can absorb and emit light

009 Nano-Biophotonics S

Particles Atoms Molecules

Solids

009 Nano-Rio

SCHRODINGER EQUATION

• Describes behavior of a particle of mass m

$$\frac{-\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},t) + V(\mathbf{r},t)\Psi(\mathbf{r},t) = -j\hbar\frac{\partial\Psi(\mathbf{r},t)}{\partial t}$$
Complex
wavefunction
potential

 Environment (including interaction with light) is characterized by the potential

009 Nano-Biophotonics Summer S

- Used to determine allowed energy levels E
- More complex systems (e.g., multiple particles) require more complex potential

ATOMS

- Energy levels determined by potential energies of electrons (depends on proximity to atomic nucleus and other electrons, as well as forces related to OAM and SAM)
- Simple example is Hyrdogen (single nucleus and single electron)
- Also used in lasing medium (e.g., He-Ne, Ar⁺, Kr⁺)

MOLECULES

· Combination of 2 or more atoms

]

1

- Energy levels determined by the potential energies
 associated with forces that bind the atoms
- 2 major types of binding are ionic (forms permanent dipole moments) and covalent (no permanent dipole moment)
- Stable when sharing of valence electrons by atoms results in reduction of overall energy

MOLECULES

- · 3 types of interactions dictate energy levels
 - rotational transitions \rightarrow microwave and far-IR region
 - vibrational transitions → IR region
 - electronic transitions \rightarrow visible and UV region
- Used to make a variety of molecular lasers from gases (e.g., C0₂, N₂) to dyes in a solvent (e.g., Rhodamine-6G, Polymethine)

9 Nano-Biophotonics Summer

INTERACTIONS OF PHOTONS WITH ATOMS

- Atom can emit or absorb a photon by undergoing upward or downward transition between energy levels, respectively
- We will consider what happens when an atom (with energy levels *E*₁ and *E*₂) is placed in an optical resonator
- Atom interacts with photons of a specific mode of frequency v_o where $hv_o=E_2-E_1$

009 Nano-Biophotonics Summer S

Studied using QED

INTERACTIONS OF PHOTONS I WITH ATOMS

009 Nano-Biophotonics Summer

- 3 types of interactions
 - Spontaneous emission
- Absorption
- Stimulated emission

SPONTANEOUS EMISSION

- Atom is initially in upper energy level (2)
- Atom decays spontaneously to lower energy level (1)
 2-
- Transition releases photon of energy $h_V \sim h_{V_0} = E_2 E_1$
- Photon energy is added to energy of electromagnetic mode
- Independent of the # of photons that may already be in the mode

hv MMM+

STIMULATED EMISSIC	ON I
Atom is initially in upper energy level (2)Radiation mode contains a photon	
 Atom is induced to emit another photon into the same mode Emitted photon is a "clone" of the first Process is inverse of absorption 	hv hv hv
 For <i>n</i> photons, probability for stimulated emission is increased by <i>n</i> times Forms foundation for lasers 	
Image Source 2009 Nano-Biophotonics Summer School	e: Fundamentals of Photonics

LUMINESCENCE

- Atomic or molecular systems can be raised to higher energy levels through excitation from heat, light, electronic impact, sound
- Nonthermal excitation results in a radiation process called luminescence

009 Nano-Biophotonics Sum

PHOTOLUMINENSCENCE

 Light emission is induced by absorption of photons

]

- Glow emitted by some materials after exposure to UV
- Spin-forbidden transition (lifetime is relatively long ~ 1ms to 10s)
- Also occurs with some quantum dots

2009 Nano-Biophote

• Referred to as fluorescence when transition is spin-allowed (lifetime relatively short ~.1 to 20 ns)

Colloidal CdSe quantum dots exposed to UV light

FLUORESCENCE MICROSCOPY

- Fluorescence microscopy is commonplace in investigations of living cells and tissues
- Needs input optical energy of the right frequency and (usually) exogenous or endogenous fluorescent probe
- Can be easily carried out using standard microscope architecture

09 Nano-Biophotonics Summer

· Provides high contrast and specificity

PE FLUORESCENCE MICROSCOPY Carried out at excitation wavelengths (blue region) that could result in photodamage of biospecimens Risk of photobleaching fluorophores in entire volume No axial sectioning w/out the use of a confocal pinhole Limited penetration depth (~50 µm) into tissues due to absorption from water, melanin, hemoglobin

NONLINEAR MICROSCOPY

 Nonlinear methods – approaches whereby output intensity is proportional to *Iⁿ*, where *I* is the input intensity and *n* is the number of photons involved in the interaction

2009 Nano-Biophot

- · Permits "optical histology"
- Deeper penetration depths (~600 μm compared to 50 μm)
- Reduced photodamage
- Reduced photobleaching

NONLINEAR MICROSCOPY

- 2ph-, 3ph-microscopy
- 2nd-, 3rd-harmonic generation microscopy
- · CARS microscopy

HISTORY

- First experimental demonstration in 1961 was of secondharmonic generation in quartz crystal
- Followed by 2-photon excitation in CaF²:Eu²⁺ (also in 1961)
- Development of mode-locked lasers made it practical for microscopy tool as demonstrated by Denk et al. in 1990

009 Nano-Biophotonics Summ

BASIC CONCEPT

- Incoherent nonlinear microscopy techniques: 2-, 3-, nphoton microscopy
- Based on molecular absorption
- Emission is isotropic and unpolarized
- Phase information is lost

_

1

- Coherent nonlinear microscopy techniques: secondharmonic generation (SHG), third-harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS) microscopy
- Based on photon scattering
- Emission is directional and polarized
 - Phase information is maintained

PROBABILITY FOR MPA

]

• Probability that a fluorophore at the center of focus of a lens will simultaneously absorb 2 photons (paraxial approx)

- For optimal fluorescence generation and avoiding saturation, $p_a{<}1,$ F_p = 100 MHz, ${<}P{>}$ = 1-10mW, assuming $\tau_p{=}100$ fs, and NA =1.4

SPATIAL CONFINEMENT

]

- For tightly-focused beam, p_a outside focal region falls off with z⁻²ⁿ, where z is the distance from the focal plane
- · Results in spatial confinement of fluorescence
- · Permits axial sectioning

ABSORPTION CROSS-SECTION

- Units of Goppert-Mayer [1 GM=10⁻⁵⁸ m⁴s/photon]
- · Difficult to predict from 1PE cross-section
- Measured experimentally (still challenging)
- Rule of thumb is that 2PE cross-section is peaked at 2x 1PE λ

9 Nano-Biophotonics Summer

SELECTION RULES

- · Selection rules differ for 2PE compared to 1PE
- Selection rules for 1PE for isolated atoms are forbidden for 2PE
- Usually not true for complex dye molecules due to reduced symmetry and molecular vibrations

PULSE WIDTH

1

Τ

- · Reducing pulse width comes with a tradeoff
- Really short pulses (< 100 fs) are sensitive to spreading due to group velocity dispersion

09 Nano-Biophotonics Summer

Usually ~ 100 fs works very well

SOME COMMON FLUORESCENT

Fluorescent	One-photon absorption peak λ (nm)	One-photon emission peak (nm)	Two-photon excitation peak (nm)	Two-photon action cross-section (GM)	Two-photon absorption cross-section (GM)
Rhodamine B	520	572	840		210
Fluorescein	498	518			38
Indo-1 free	345	475		4.5 at 700 nm	12
Indo-1 Ca	335	400		1.2 at 700 nm	2.1
Fura-2 free	362	512		11 at 700 nm	
Fura-2 Ca	335	505		12 at 700 nm	
Bis_MSB	340	420		6.0 at 691 nm	6.3
Dil C-18	500	570		95 at 700 nm	
Coumarin 307	395	488	776	19	
Cascade blue	376, 399	423	750	2.1	
Lucifer yellow	430	533	860	0.95	
BODIPY	480	520	920	17	
NADH	340	430		0.01 at 700 nm	
Dansylhydrazine	336	531		0.72 at 700 nm	
DAPI	345	455		0.16 at 700 nm	

INTENSITY POINT SPREAD FUNCTION

- Useful to look at intensity PSF, |h(ρ,z)|²
- We can break this down into $|h_{ill}(\rho,z)|^2$ and $|h_{det}(\rho,z)|^2$ for illumination and detection, respectively
- In general, $|h_{\rm fll}(\rho,z)|^2$ and $|h_{\rm def}(\rho,z)|^2$ are not the same b/c of optics
- Also, for fluorescence microscopy $\lambda_{\textit{iil}}$ and $\lambda_{\textit{det}}$ are not the same

2009 Nano-Biophotonics Summer S

SPATIAL RESOLUTION

• Spatial resolution involves measure of PSF (e.g., Rayleigh criterion)

conventional	$d_{lateral} = \frac{0.61}{NA} \lambda$	$d_{axial} = \frac{2n}{\left(NA\right)^2} \lambda$
confocal	$d_{lateral} = \frac{0.4}{NA} \lambda$	$d_{axial} = \frac{1.4n}{\left(NA\right)^2} \lambda$
2PE	$d_{lateral} = \frac{0.7}{NA} \lambda$	$d_{axial} = \frac{2.3n}{(NA)^2} \lambda$

 $\boldsymbol{\lambda}$ corresponds to wavelength of detected light

2009 Nano-Biophotonics Summer School

SPATIAL RESOLUTION

• Assuming, $\lambda_{det} = 520 nm$

I

		Lateral	Axial
	conventional	240 nm	930 nm
	confocal	160 nm	650 nm
	2PE	280 nm	1070 nm

2009 Nano-Biophotonics Summer School

 Strength of MPFM comes from its axial sectioning capabilities in thick, highly-scattering, specimens

 $E_r(\omega)^2$ $E_y(\omega)^2$

 $E_z(\omega)^2$

SHG SIGNAL POWER $P_{SHG} = \frac{1}{2} \sigma_{SHG} I_{e}^{2}$

Input power

- Typically, $\sigma_{\scriptscriptstyle SHG} << \sigma_{\scriptscriptstyle 2PE}$
- Results in confinement of SHG signal to sub-femtoliter volume

SHG cross-section of an individual dipole

COMPARISON TO TWO-PHOTON I FLUORESCENCE MICROSCOPY

- Same hardware requirements (\$\$\$)
- SHG signal is coherent while fluorescence is incoherent (polarization and direction)

2009 Nano-Biophotonics Summer Sch

- Same spatial resolutions (applicable to live imaging)
- · SHG is generally label free
- · Less heating to specimen since no absorption

