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Infrared spectroscopy-based Chemical imaging 
for biomedical research and cancer pathology

Department of Bioengineering, Micro and Nanotechnology Laboratory 
and Beckman Institute for Advanced Science and Technology

Rohit Bhargava

What is chemical imaging?
￭ Principle: Employs the intrinsic chemical contrast of 

tissue to provide an image: label-free method
￭ Chemical content is determined by spectroscopy

– Vibrational spectroscopic imaging (molecular spectroscopy 
chemical imaging)

• FTIR absorption imaging (Mid-IR – 2 to 14 μm)
• Raman scattering imaging – Raman, RRS, SERS, CARS 

(UV/visible/near-IR: 300 nm – 1.1 μm)
– Other techniques of selective chemical sensitivity

• NIR/Vis spectroscopy – overtones, refractive index
• Intrinsic fluorescence, FLIM – important specific classes
• MR spectroscopic imaging – metabolites
• Mass spectroscopic imaging – proteins

IR imaging technology
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￭ Instrumentation based on 
classical techniques (40-100 
years), hardware (<10 years)
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￭ Data correlations for over 100 

years
￭ What can we measure in tissue?

￭ “Mesoscale” chemistry
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FT-IR spectroscopy Imaging
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￭ Typical characteristics
– Wavelengths (2048 elements over 2.5 – 12.5 μm), x, y typically ~1024

￭ Computation is essential to recover data
– Manual examination is prohibitive

￭ Trade-offs: spatial coverage vs. resolution, spectral resolution vs. 
signal-to-noise ratio, time vs. data quality/size vs. information
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Motivation

￭ Cancer pathology
– Prostate cancer as a paradigm – 1 

in 6 men
– Biopsies: >1 million annually with 

disease ~20%
– Diagnoses: >200, 000 annually 

with lethal ~20%
Grading is subjective variable

Screening

Biopsy

Is it suspicious?

Is it cancer?

D I A G N O S T I C

– Grading is subjective, variable, 
leads to conflicting therapy routes

– Prognosis tools are not perfect –
97% undergo therapy

– “Holy Grail” of oncologic pathology
– Primary evaluative standard for 

research
￭ Manual recognition in 

stained tissue

Therapy

Follow-up

Diagnosis

What is the grade? Stage?
Will it metastasize?

Is adjuvant therapy needed?

Has cancer recurred?

R E S E A R C H  

Cancer and Diagnostic Process

Biopsy

￭ No stains, no manual decisions

Epithelium

Stroma

Benign
Grade 3
Grade 4

American Cancer Society, est. 2008
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Chemical Imaging for Tissue

y

Unstained Biopsy Sample

Spectroscopic imagingH&E Staining
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From Data to Knowledge

Information

x=2048, y=2048, z=2048, t ~ ms to days

￭ Model based design of experiments
￭ Hypothesis driven analysis – supervised data analysis
￭ Biologically inspired statistical pattern recognition of spectra
￭ Approach – Model, Train algorithm, Classify, Validate
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Prostate Histology

Integrative classification process

Gold Standard

Algorithm
(Modified Bayesian)

Optimized Prediction
Algorithm

Optimization

Optimal Metric Set

Calibration/Validation
Statistics

Sensitivity Analysis
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Integrative Process and Key Technologies

Hi-fi, fast FTIR Imaging

Samples

Custom Tissue Microarrays
* Kononen et al. Nat. Med. 4, 844-847 (1998).
Levin and Bhargava Annu. Rev. Phys. Chem. 56, 429-474 (2005).
Kong and Bhargava, Submitted (2008): Living tissue arrays

* Lewis et al Anal Chem 67 3377-3381 (1995)

Biopsy 

Pattern Recognition Algorithms

Imaging Data

Diagnosis

Statistical Validation

Llora , Priya, Bhargava Nat. Computing In Press (2007).
Bhargava et al. Biochim Biophys Acta. 1758, 830-845 (2006).
Reddy and Bhargava Anal. Chem., Submitted (2008): Statistical Model

Fernandez et al. Nat. Biotechnol. 23, 469-474 (2005).
Bhargava et al. Nat. Biotechnol. 25, 31-33 (2007).
Bhargava Anal. Bioanal. Chem. 389, 1155-1169 (2007).

 Lewis et al. Anal. Chem. 67, 3377-3381 (1995).
Bhargava and Levin Anal. Chem. 73, 5157-5167 (2001)
Bhargava and Reddy Anal. Chem., Submitted (2008): Noise rejection

Prognosis

Major Translational Themes

￭ Translation to clinical practice
– Comprehensive histopathology - Model-based 

visualizations
– Screening Pathology
– PrognosisPrognosis

￭ Translation to research
– Replicate some functions of molecular imaging
– Multimodal imaging
– Automated molecular analysis

Application 1: Prostate Histology
Validation of Prostate Histology: 970 samples, 10 million spectra
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Fernandez, Bhargava, Hewitt and Levin Nat. Biotechnol., 23, 469-474 (2005)
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Classification examples

￭ Elimination of chance/bias
– Samples from 30 different hospitals- preparation diversity
– Multiple arrays, mixed arrays, copies of arrays
– Instrument changes
– Experimental: thickness effects, artifacts, population diversity

Metrics, Training and Validation
Prostate Histology
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Benign : 0.991
PCa : 0.991
PIN : 0.997
Atrophy : 0.986
Sq. Metaplasia : 0.978

Validation Data: 2 mil/400 Pathology

Colon Histology
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Automated Grading Results

Assigned Grades: Pathologist Review Assigned Grades: Spectroscopy+Computation

Sensitivity 81.8%

Specificity 72.6%

￭ First attempts were unsuccessful
￭ Questions:

– Can cancer be detected?
– Is morphological grading possible 

with chemical data?

2 Class Models
50 patient NCI validation: Cancer and Normal Adjacent Prostate (NAP)

Overall Pixel Accuracy
Tuned for Epithelium Sensitivity
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Prostate Cancer Diagnosis

￭ Overall pixel accuracy ~ 88.5% ; Heterogeneity in samples?
￭ 1 cancer sample classified as benign (71)
￭ 1 benign sample classified as cancerous (69)
￭ Sensitivity and specificity exceeding human capabilities
￭ Large validation studies underway

Array – 80 Patients Array – Histology Pathology Design Pathology Result
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Challenges

￭ Opportunity to leverage both structure and 
chemistry without human supervision, dyes 
or probes

￭ Objective, quantitative and automated nature 
may be advantageousmay be advantageous

￭ Clinical translation facilitated by
– Better, cheaper and faster instrumentation
– Multi-institution validation
– Novel concepts
– Integration with clinical workflow

Breast Pathology: Case Study

￭ Application: rapid screening of biopsies
– Detect cancers rapidly
– Quantify lesion size

￭ Desirable translational features
– Accurate
– Fast and simple to understand

Minimal supervision– Minimal supervision
– Quality control steps

￭ Developments
– “Bare bones” model: 2 class (epithelium/stroma; cancer/no 

cancer)
– Move to larger (poorer) detectors
– Use computation for noise rejection
– Use spatial and spectral features

2 Class Breast Histology Model
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 Stroma (Calibration)
 Epithelium (Calibration)
 Stroma (Validation)
 Epithelium (Validation)

￭ 85% of internal human cancers are epithelial in 
origin

￭ Epithelium-stroma segmentation is the first step
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Translation: Lesion Detection
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Translation for pathology research

￭ New characterization methods
– Tissue engineering and cellular imaging

￭ New technology for molecular analysis
– High-throughput -omics

￭ Computational models for pathology
– Design and evaluation of imaging instrumentsDesign and evaluation of imaging instruments

IR Histology Collagen+density Ultrasound B-mode
(20 MHz simulation)

Cancer Models - Current state of the art

￭ Disease biology and progression
– 2D cultures of single cell type are the standard
– Recent value of 3D models emerging
– 3D interplay of cells is critical in understanding disease 

progression
– Animal models – expensive, poor control
– Solution – Engineered tissue models

￭ Implications for pathology
– Standardization
– Fundamental statistical analyses
– Quantification for tissue engineering
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Engineered Tissue Models for Heterotypic Interactions
Model System 1: Skin
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In-vivo : OCT
Histology
FTIR Imaging
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Tumor Progression
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Multimodal Imaging
Tumor Growth in Engineered Skin

Day 0 Day 3 Day 16Day 6 Day 8 Day 10 Day 13 Day 19

4  sets of 20 engineered skin tissues were cultured. One tissue was taken out 
each day for analysis.

￭ OCT: a tendency of increasing dark areas at the epidermis/dermis boundary;
￭ HE and FTIR: visible increase of tumor size;
￭ FTIR also allows the development of automated pathology protocols;

Multimodal imaging analysis to help the early melanoma diagnosis ?

OCT results with Prof. Boppart, UIUC

Heterotypic interactions?
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probed by chemical imaging
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Summary: What’s in store?
￭ Descriptive pathology

– Attempt to match pathologist/molecular techniques
• Comprehensive histology
• Diagnostic pathology

– Clinical samples and problems drive solutions
• Biopsy screening

– New technology from classical pathology knowledgeNew technology from classical pathology knowledge
• Tissue analysis
• Automated LCM

￭ Predictive pathology
– Newer ideas
– Utilize full power of spectroscopic and imaging 

techniques
– Key enabling technology

Tech. 1: Parsing Rules from Multimodal Imaging
H&E imageIR classification image
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￭ Some information is 
independent

￭ Some morphologic information 
can be parsed by spectroscopy
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Tech 2. Molecular Imaging Vs. Chemical Imaging

H&E Factor VIII Vimentin SM αActin

Epithelium
Fibroblasts + ECM

￭ Principle: molecular imaging measures one target – chemical 
imaging measures the state of the tissue

￭ Identification potential is preserved
￭ Molecular localization/origin is lost; Chemical sensitivity is 

gained, accuracy may be better
￭ Some molecular information can be parsed by spectroscopy

Myofibroblasts
Epithelium

Lymphocytes
Endothelium/Blood
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Molecular = Chemical Imaging
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characterized, classes of 
properties: 
(1) Fibroblast enrichment, 
(2) ECM modification
(3) Microvessel density
(4) Protein structure of blood 
vessels

(5) smooth muscle 
proliferation
(6) “myo-” transitions
(7) collagen cross-link density 
(mechanical properties?)
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Tech. 3: Ultra-high resolution imaging (w/glass slides)
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￭ Imaging is possible
￭ Spectral corrections

– Reduced scattering
– Absorbance recovery

￭ Simple models 
validated

￭ Data quality challenges

50 μm

epithelium

stroma 

Class Image

Tech 4. Analytical methods
Systems Approach to Cancer Pathology

￭ Principle: disease is a perturbation of a 
network of key variables
– Molecular systems biology: genes, proteins
– Network of chemical and physical changes
– Context of tissue structure

K t￭ Key components
– Observe: often includes technology
– Deduce
– Model
– Predict

￭ Human scale or molecular scale
Kitano, H. Science 2002, 295, 1662 - 1664



6/8/2009

12

Key Technologies for Systems Pathology

2. Molecular Biology/ CTE1. Pathology
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On-going efforts: Systems Pathology
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Breast

600 Patients, 15 year follow-up

￭ Predictive models to inform clinicians, imaging
￭ Molecular and cellular information with multi-

scale detail
￭ Challenges:

– Information fusion, selection of sub-spaces
– Optimized instrumentation, algorithms and software for 

translation

Thank you

￭ Students and Fellows Wash Univ St Louis Guido Sauter￭ Students and Fellows
– Breast: Michael Walsh, Frances Pounder
– Prostate: Rohith Reddy, Jin-Tae Kwak
– Colon: Jason Ip
– Molecular and Tissue: Synthia Lane, 

Rong Kong, Jing Xu, Sarah Holton
– Instrumentation/Algorithms/Probes: 

Charles Feng, Anil Kodali, Brynmor 
Davis, Spencer Brady

￭ External collaborators
– Stephen M. Hewitt, NIH 
– Prostate: Andre Balla, U. Chicago -

Gerald Andriole and Peter Humphrey, 

Wash. Univ., St. Louis - Guido Sauter, 
Hamburg

– Colon: Gus Davis, Yale
￭ Funding

– Department of Defense
– Susan G. Komen for the Cure
– Advanced Technology Program, NIST
– National Cancer Institute (SCCNE-UIUC)
– Department of Energy/Los Alamos 

National Laboratory
– UIUC: NCSA, Research Board, CIRS


