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What is chemical imaging?

= Principle: Employs the intrinsic chemical contrast of
tissue to provide an image: label-free method
= Chemical content is determined by spectroscopy
— Vibrational spectroscopic imaging (molecular spectroscopy >
chemical imaging)
« FTIR absorption imaging (Mid-IR — 2 to 14 um)
* Raman scattering imaging — Raman, RRS, SERS, CARS
(UV/visible/near-IR: 300 nm — 1.1 um)
— Other techniques of selective chemical sensitivity
» NIR/Vis spectroscopy — overtones, refractive index
« Intrinsic fluorescence, FLIM — important specific classes
* MR spectroscopic imaging — metabolites
» Mass spectroscopic imaging — proteins

IR imaging technology
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) = Data correlations for over 100
= Instrumentation based on years
classical techniques (40-100 = What can we measure in tissue?

years), hardware (<10 years)

= “Mesoscale” chemistry




FT-IR spectroscopy > Imagi
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= Typical characteristics

— Wavelengths (2048 elements over 2.5 — 12.5 um), x, y typically ~1024
= Computation is essential to recover data
— Manual examination is prohibitive
= Trade-offs: spatial coverage vs. resolution, spectral resolution vs.
signal-to-noise ratio, time vs. data quality/size vs. information
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= Cancer pathology

— Prostate cancer as a paradigm — 1 —
in & men parace

— Biopsies: >1 million annually with
disease ~20%

— Diagnoses: >200, 000 annually
with lethal ~20%

— Grading is subjective, variable, Diagnosis
leads to conflicting therapy routes Whatts o grad? Siage?

— Prognosis tools are not perfect — Willit metastasize?
97% undergo therapy

— “Holy Grail” of oncologic pathology Jherapy,

Is it suspicious?

Is it cancer?

— Primary evaluative standard for ! ! [l scjuvant therapy noeceq? ]

research
Follow-up
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= No stains, no manual decisions

Enmericzn Cancer Society, est. 2008




Chemical Imaging for Tissue

Unstained Biopsy Sample

H&E Staining Spectroscopic imaging
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Data to Knowledge

x=2048, y=2048, z=2048, t ~ ms to days

= Model based design of experiments

= Hypothesis driven analysis — supervised data analysis

= Biologically inspired statistical pattern recognition of spectra
= Approach — Model, Train algorithm, Classify, Validate
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Integrative classification process

Prostate Histology
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Integrative Process and Key Technologies

Custom Tissue Microarrays
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Major Translational Themes

= Translation to clinical practice

— Comprehensive histopathology - Model-based
visualizations

— Screening Pathology
— Prognosis
= Translation to research
— Replicate some functions of molecular imaging
— Multimodal imaging
— Automated molecular analysis

Application 1: Prostate Histology
4

Validation of Prostate Histology: 970 samples, 10 million sp
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Classification examples

Elimination of chance/bias

— Samples from 30 different hospitals- preparation diversity
— Multiple arrays, mixed arrays, copies of arrays
— Instrument changes

— Experimental: thickness effects, artifacts, population diversity
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Metrics, Training and Validation

rostate Histology
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Automated Grading Results
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Assigned Grades: Pathologist Review Assigned Grades: Spectroscopy+Computation

= First attempts were unsuccessful
= Questions:
— Can cancer be detected?

— Is morphological grading possible
with chemical data?
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2 Class Models

50 patient NCI validation: Cancer and Normal Adjacent Prostate (NAP)
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Array — Histology Pathology Design Pathology Result

= Overall pixel accuracy ~ 88.5% ; Heterogeneity in samples?
= 1 cancer sample classified as benign (71)

= 1 benign sample classified as cancerous (69)

= Sensitivity and specificity exceeding human capabilities

= |arge validation studies underway




Challenges

= Opportunity to leverage both structure and
chemistry without human supervision, dyes
or probes

= Objective, quantitative and automated nature
may be advantageous
= Clinical translation facilitated by
— Better, cheaper and faster instrumentation
— Multi-institution validation
— Novel concepts
— Integration with clinical workflow
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Breast Pathology: Case Stu

= Application: rapid screening of biopsies
— Detect cancers rapidly
— Quantify lesion size
= Desirable translational features
— Accurate
— Fast and simple to understand
— Minimal supervision
— Quality control steps
= Developments

— “Bare bones” model: 2 class (epithelium/stroma; cancer/no
cancer)

— Move to larger (poorer) detectors
— Use computation for noise rejection
— Use spatial and spectral features

2 Class Breast Histology M
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Translation: Lesion Detection
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Translation for pathology research

= New characterization methods
— Tissue engineering and cellular imaging
= New technology for molecular analysis
— High-throughput -omics
= Computational models for pathology
— Design and evaluation of imaging instruments

IR Histology Collagen+density Ultrasound B-mode

(20 MHz simulation)

Cancer Models - Current state of the art

= Disease biology and progression
— 2D cultures of single cell type are the standard
— Recent value of 3D models emerging

— 3D interplay of cells is critical in understanding disease
progression

— Animal models — expensive, poor control
— Solution — Engineered tissue models
= |mplications for pathology
— Standardization
— Fundamental statistical analyses
— Quantification for tissue engineering




Engineered Tissue Models for Heterotypic Interactions;

Model System 1: Skin
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Multimodal Imaging

Tumor Growth in Engineered Skin

Day 6 Day 8 Day 10 Day 13 Day16  Day19

OCT results with Prof. Boppart, UIUC
4 sets of 20 engineered skin tissues were cultured. One tissue was taken out
each day for analysis.
= OCT: a tendency of increasing dark areas at the epidermis/dermis boundary;
= HE and FTIR: visible increase of tumor size;
= FTIR also allows the development of automated pathology protocols;

Multimodal imaging analysis to help the early melanoma diagnosis ?

Heterotypic interactions?
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= Stromal involvement likely ~ 150
nm

= Multiple cells’ tumor response
probed by chemical imaging
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Summary: What’s in store?

= Descriptive pathology
— Attempt to match pathologist/molecular techniques
« Comprehensive histology
« Diagnostic pathology
— Clinical samples and problems drive solutions
« Biopsy screening
— New technology from classical pathology knowledge
« Tissue analysis
« Automated LCM
= Predictive pathology
— Newer ideas
— Utilize full power of spectroscopic and imaging
techniques
— Key enabling technology
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Tech. 1: Parsing Rules fr:

Multimodal Imaging

H&E imace

Distance between Lumen Number of Nuclei

Lumen Size Number of Lumen

= Some information is
independent

= Some morphologic information
can be parsed by spectroscopy

Overlaid image
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I Fibroblasts + ECM
[ Epithelium

B Myofibroblasts
B Lymphocytes

B Endothelium/Blood

= Principle: molecular imaging measures one target — chemical
imaging measures the state of the tissue

= |dentification potential is preserved

= Molecular localization/origin is lost; Chemical sensitivity is
gained, accuracy may be better

=_Some molecular information can be parsed by spectroscopy
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Molecular = Chemical Imaging
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= Reactive stroma can be (5) smooth muscle
characterized, classes of proliferation
properties: (6) “myo-" transitions ¥
(1) Fibroblast enrichment, }7) collagen cross-link density **1

(2) ECM modification
(3) Microvessel density
(4) Protein structure of blood
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mechanical properties?) i
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Tech. 3: Ultra-high resolution imaging (w/glass slides)
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= |maging is possible

= Spectral corrections
memem  — Reduced scattering
M stoma — Absorbance recovery

Simple models
validated

Data quality challenges

Tech 4. Analytical methods
Systems Approach to Cancer Pathology

= Principle: disease is a perturbation of a
network of key variables
— Molecular systems biology: genes, proteins
— Network of chemical and physical changes
— Context of tissue structure

= Key components
— Observe: often includes technology
— Deduce
— Model
— Predict

= Human scale or molecular scale

Kitano, H. Science 2002, 295, 1662 - 1664
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Key Technologies for Systems Pathology
Ping rules [2 Molecular Biology/ CTE |
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On-going efforts: Systems Pathology

Pi ros‘sate

Breast

R
Time to PSA Failure (months)

950 Patients, 15 year follow-up 750 Patients, 15 year follow-up 600 Patients, 15 year follow-up

= Predictive models to inform clinicians, imaging
= Molecular and cellular information with multi-
scale detail
= Challenges:
— Information fusion, selection of sub-spaces

— Optimized instrumentation, algorithms and software for
translation

= Students and Fellowz Wash Unas_ £t 1 auis - Guido Sauter,

— Breast: Michael Walsh, Frances Pounder Hamburg

— Prostate: Rohith Reddy, Jin-Tae Kwak — Colon: Gus Davis, Yale

— Colon: Jason Ip = Funding

— Molecular and Tissue: Synthia Lane, - Department of Defense
Rong Kong, Jing Xu, Sarah Holton — Susan G. Komen for the Cure

— Instrumentation/Algorithms/Probes: — Advanced Technology Program, NIST
Charles Feng, Anil Kodali, Brynmor — National Cancer Institute (SCCNE-UIUC)

Davis, Spencer Brady — Department of Energy/Los Alamos
= External collaborators National Laboratory
— Stephen M. Hewitt, NIH — UIUC: NCSA, Research Board, CIRS
— Prostate: Andre Balla, U. Chicago -
Gerald Andriole and Peter Humphrey,
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