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Combine Optics with Multifunctional Agents

Can leverage the portability and multi-dimensional
detection of optics with increasingly powerful and
versatile agents for point-of-care detection, imaging,
and diagnosis?

Spectroscopic detection Imaging

Monitoring Targeting

Drug delivery Therapy

Nie group

Outline

Lecture 1 (last week)

 Optical Coherence Tomography (OCT)
*Beam Delivery Instruments

* Morphological & Cellular OCT Imaging
* Spectroscopic OCT

* Application to Cancer Imaging

Lecture 2 (today)
* Molecular OCT Imaging
* Contrast Agents for OCT
- Scattering, Absorbing, Modulating Probes

Contrast in Imaging Modalities

*Magnetic Resonance
- T, and T, differences
- Gadolinium, SPIOs

* Nuclear Medicine
- Radioactive isotopes
-FDGin PET

« Optical Imaging
- Bioluminescence
- Fluorescence
- Raman Shifts
- Scattering /Absorption

* X-Ray Computed Tomography (CT)
- Differential attenuation
- lodinated compounds

* Ultrasound
- Acousticimpedance
- Micro-bubbles




OCT Limitations
OCT Limitations

o
=}
S
o
©
<}
]
o
<
=4
S
=
a
o
°
@
=
g
@
=
®
®
<
a
o
5}
[

OCT Limitations




Contrast Methods in OCT Contrast Methods in OCT

Functional (P iological) OC ” Imaging E: 10us Prok

> Doppler (blood flow) y > OCT does NOT sense fluorescence
» Standard deviation imaging & speckle
contrast (movement) " Probe Engineering Issues

» Polarization-sensitive OCT (birefringence) » Synthesis methods
> Size (scattering < tissue transport)
» Specificity of targeting

[E—
500um

Endogenous Contrast in OCT

» Spectroscopic OCT (melanin, Hb, HbO,)
» Second-harmonic generation OCT
(collagen, ultrastructure) echniques Detection Engineering Issues

> Nonlinear interferometric vibrational v > Background discrimination (a priori information needed?)
imaging (molecular bonds)

» Biocompatibility =) minimum detectible concentration < toxic concentration

Sensitivit!
AU ynerqistic Approach

Detection > SIGESS

Probe Detection Techniques in OCT OCT Molecular Contrast Enhancing Techniques

Exogenous Probe Detection Techniques

> Scattering /V

-Protein microspheres (Barton, today)

-Plasmon-resonant nanoshells (Drezek)
» Absorption

Exogenous

-Plasmon-resonant nanocages (Xia)
-Plasmon-resonant nanorods (today)
> Spectroscopic absorption
-NIR-absorbing dyes (today)
» Transient absorption
-methylene blue, ICG (lzatt)
> Magnetomotive
-magnetite nanoparticles (today)

Endogenous

Lees i gum




OCT Contrast Agents: Overview

« Scattering agents
protein microspheres*
liposomes

Protein Microsphere Structure

Iron-Oxide Nanoparticles

Protein
microsphere-encapsulated ferrofluids Shell
nanoparticles* & ferrofluids Surface / (BSA)

* Spectroscopic agents Oil Core
NIR absorbing dyes* gﬁ)ge‘ab'e
microsphere encapsulated dyes
carbon nanotubes

* Plasmon-resonant agents
gold* nanorods

Synthesis of Protein Microspheres OCT Microsphere Cont

Titanium Horn «Nanoparticles embedded in
Stainless Steel Collar shell or encapsulated

« Synthesis via high-intensity
Sonication power: 7 W
Sonicationtime: 3 min ultrasound
Cell temp: 45-65°C « Diameters typically ~ 2um

Averagesize 1.4 um
Yield : 2.6 x 106 pspheres/uL. *Biocompatible

Gas Inlet /Outlet

Non Aqueous Liquid Shell: albumin, Core: iron: e partic ended in oil

Microspheres/ pL

5% WV Bovine Serum X . N
Albumin Engineered Microsphere Combinations
3 5
Particle Diameter (um) Protein S| s Surface Modifications
> Role of High-Intensity Ultrasound (20 kHz) (AR : RES)
: Hemoglobin Fluorescein
Pepsin Water Iron oxide colloid
nolysis Immunoglobulins Organic liquids Immunogobulins
50 nm - 15 pm) Lipase Acetoacetate Folate
Peroxidases Fluorocarbons Gd complex
Modified Myoglobin lodinated agents Monoclonal Antibodies
Gd complexes Gold
Ferrofluids carbon
Melanin




Protein Microspheres as OCT Contrast Agents

Protein Shell ) L () agent:
OCT images of in vivo Qega (3
mouse liver pre- and post- s .

tail vein injection with gold-
coated albumin
Carbon microspheres

Melanin
mouse inner intestinal
wall, OCT signal vs. time
after tail vein injection
with iron-oxide
encapsulated protein
microspheres

Iron Oxide

Microsphere Uptake by Macrophages Magnetomotive Microspheres

Control Macrophages - No Microspheres F
r— h

n-oxide particles suspended in oil
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Tissue Phantom: 3-D agarose scaffold, seeded with macrophages with engulfed microspheres




Integrin-Targeted
Microspheres

RGD-Targeting of Integrin Receptors
dimeric trans-membrane

receptor
Cell attachment, survival, migration,
proliferation, tumorgenesis,
metastasis
RGD Microspheres
Over 25 known integrin receptors
Most recognize small tri-peptide
ence
glycine-aspartic acid)

Integrins overexpressed in tumor
cells, angiogenesis, atherosclerosis

Background-Free Contrast Agent Imaging

. . I5pm
* Human tissue not ferromagnetic
« Displacement or rotation induced by B
« Modulate optical scattering
« B switched on & off with successive depth
scans — difference image

M-mode of magnetite
particle in agarose with
modulated B-field

b= =7 bes

" - N rotation of anisotropic
transverse displacement axial displacement agent

In Vivo Integrin-Targeted Microspheres
MNU-rat model, RGD-Nile Red Microspheres

ectioned liver
stain
In vivo fluore:

Resected liver Resected kidneys HUVEC cells (+)

Cell lines RGD coated microspheres Non-coated microspheres
HUVEC +t +
SKBR-3 +/- -
Macrophages + +1-
Empty cover slip + +/-

Motivation: Targeted Imaging Contrast in OCT

Contrast agents figures of merit: Magnetic Contrast Agents

* NIR scattering or absorption > Externally controllable!

« Background discrimination > High magnetic susceptibility y,

- Biocompatibility > Overlap with MRI contrast agent

« Size <200 nm technology

* Molecular specificity __ Contrastofup
t0 105!

Carboxyl-terminated
magnetite (Fe;O
nanoparticles



Magnetomotive OCT (MM-OCT)

light beam to/from OCT
interferometer

imaging lens

power
supply

electromagnet
B4
o, P <

sample

magnetite
nanoparticles

Detecting
Nanoscale
Magnetomotion

Tissue phantom:
0.93 mg/g Fe;0,

o
48 08 04 02 00 02 04 08 08
Az = Axial Displacement (jum)

particle volume

pr B 20 f

magnetic field
gradient

B=009T
VB2=2.5T?/m
Fp= 0.2 fN
(25nm particle)

Vp(){p 71’1issu€)v‘é‘2

MM-OCT Contrast

Magnetomotion perturbs adjacent
light scattering structures

Field on
Amplitude &

phase changes

\

Modifies OCT interferogram

Method to Distinguish Magnetomotion from
Physiological Motion
Three-Measurement Sequence
At

= a,11(t)
AR o
N = 8on(t+2A1)

OCT signal a at:

Teorr = Characteristic tissue

correlation time

Need At< T, tosee
magnetomotion above
background motions

Definition of MM-OCT Imaging Signal

S (dB)=10log|
y \

Logarithm ensures S, averages to 0

ot . when no magnetomotion
nburg, et al, Opt. Express 13, 6597 (2005)




Tissue Phantoms Predicted Scaling of MM-OCT SQUID magnetometry
Optically & mechanically simulatetissue OCTimages

Force induced by magnetic field:
TiO, silicone

Optical: . intralipid phantom =V ( MeV ) BV L) Field
TiO, microparticles 4 mg/g - . / o~ 'e_
(= 2% intralipid) £ (saturated) ) during

chanical MMOCT

silicone matrix w/ tailored elasticity % i i X X
(10:1 PDMS + GE-RTV 615) g Displacement in elastic medium:

Magnetic 3 oFp Magnetc Fiek (Gauss)
Fe;0, nanoparticles 20-30nm AZ oc —= Sigma 20 nm magnetite
(Sigma-Aldrich #310069) E *—giastic modulus

ettt

Magnetizstion femuig)

AnNs =) 2stions i
Al OCT signal change
- Dependence of MM-OCT signal on:

caused by displacement: . ) )
> magnetic field strength B Predicted Scaling Law
> magnetic particle concentration A, o< S‘AZ‘ —  _ |A7a 5" l/)n,,* gne=lo

» optical scattering mm

Speckle-averaged scattering
« Sensitivity of MM-OCT Detection sensitivity ~220 ppm
o urg, et al., Opt. Ex (Theoretical ~2 ppm)

Magnetomotive OCT in Practice Cell Labeling with Magnetic Optical Contrast Agents

Macrophages (3774A.1) Macrophages (J774A.1) in three-dimensional agarose gel scaffold

ith ~509
Ocean Nanotech — Cells with ~50% uptake
20nm magnetite,0.15 mg/mL overnight exposure Control cells of magnetite

Bt o W

P
scaffold

Oldenburg, et al., Optics

! Pt 100pm
Letters, 30:747, 2005 —




In Vivo
MM-OCT

Xenopus laevis
tadpole

MM-OCT in Practice o

0 MMOCT Signal (dB)

Y

Macrophages suspended in 1.5% agarose scaffold

Magnetic Control (-) agents, dorsal

0 Magnetomative OCT Signal (d8)

(-)agents, ventral

(+)agents, dorsal

Prussian bluestain

Oldenburg, et al,
Optics Express,
13:6597, 2005

Oldenburg etal, Opt. Lett (+) agents, ventral

Magnetomotive OCT of in vitro chicken skin
No magnetic agents Injected magnetic nanoparticles

Magnetomotive OCT In Vivo

0

Imaging magnetic nanoparticles in a carcinogen-
induced rat mammary tumor

Magnetic Signal

Control tumor Magnetite-injected tumor

Structural OCT

30 Structural OCT Signal (dB)

MM-OCT

Combined




Magnetomotive OCT In Vivo Magnetomotive Optical Coherence Elastography
Delivery via tail-vein injection
amplitude 100 pm « Optical and mechanical

properties of phantom similar
to those of tissue

Control Injected Nanoparticle Injected

+Magnetic nanoparticles
homogeneously dispersed in
samplevolume

Optical scattere
TiO, microparticles 4 mg/g (avg. size 1 pm)

Mechanical simulator:
Structural OCT Magnetomotive Structural OCT Magnetomotive siliconematrix with tailored elasticity (10:1 PDMS + GE-RTV 615)

Magnetic agent:
Rat spleen distribution of magnetic nanoparticles euthanized 2 hours after tail vein injection. Fe;O, nanoparticles 20-30 nm (Sigma-Aldrich #310069);
mass concentration 2.5 mg/g

. Magnetomotive Optical Coherence Elastograph
MM-OCE Transients = YnSemEiye Qnd ' graphy

amplitude
s < « evidence of underdamped oscillations in

: 3 F a4 sample when magnetic impulse exerted:
femod = 6.67 Hz; duty cycle = 33% s E -

Camera line rate = 1 kHz, M-mode imaging

Sampledepth

scolod ampiitude nd

Time (ms)

vertical scale bar = 0.3 mm




Magnetic Nanoparticle MRI Contrast In Vivo Magnetic Nanoparticle MRI Contrast

Negative T, contrast due to particle magnetization MNU rat mammary tumor model, non-targeted agents

—» same figure of merit as in MM-OCT! Negative T, contrast due to particle magnetization
MRI of agarose phantoms dosed with Ocean Nanotech 20 nm magnetite () agents (+) agents () agents (+)agents

Techo = 11 ms Techo = 50 ms Dose in ppm

® © ® ®
e ®
£ o ®®

Spin-echo MRI, 4.7T Sisco, T, =4s Mark
p (GIEEED arker Spin-echo MRI, 4.7T Sisco, Trepeition =4S

Collaboration with B. Odintsov, Beckman Imaging Center
° Collaboration with B. Odintsov, Beckman Imaging Center

Protein Microspheres as an Cell Studies
MM-OCT Contrast Agent Targeting Specificity
(-) Microspheres (+)Microspheres Z g |
5% Agarose Gel
o (-)0.074 dB (n=11)
o (+)1.130dB (n=11)

Non-Targeted

Macrophage Uptake
* (-)0.018dB (n=11)
* (+)0.411dB (n=11)

In Vivo Intra-Tumor
Injection

+ (0.002 dB (n = 21)
+ (40598 dB (n=21) CRL - 4010 (ov,Bs") HT - 29 (@, B3+)
Human Mammary Epithelium Human Colon Adenocarcinoma

RGD-Targeted




Animal Studies (Atherosclerosis) Animal Studies (Atherosclerosis)

Outside Outside

Lumen

Lumen

* Atherosclerotic Rat
— High Fat, High Cholesterol Diet
— Euthanized at 10 Weeks on Diet

Outside

~ Lumen
*  MM-OCT Results:
— Mean dB Mag - All Images = 0.329dB (n=17)
— Mean dB Mag - Images with Focal Magnetic Signal = 0.931 dB (n=5)
MM-OCT Results: Mean dB Mag = 0.027 dB (n=17) — Mean dB Mag - Images with no MM Signal = 0.077 dB (n=12)

+ Control Rat: Normal Diet

Animal Studies (Atherosclerosis) Spectroscopic OCT

Qutside

Outside

L
”

Lumen

Envelope: Structural OCT Carrier: Spectroscopic OCT
4 = Amplitude Reflection = Spectral Reflection

MM-OCT H&E Histology
Mag dB = 2.218 dB

= Reflectivity / Scattering = Scattering / Absorption




Spectroscopic OCT Detection of Contrast Agents
Analyze spectrum of backscattered lightin a depth-resolved way

Basic Idea:
I transmitted
uvette containing dyes ¢ | b "”;‘b’g?’i”:;“l’}(j
absorbing shorter " ‘“
wavelength

Intensity (a.u.)

1

120nm \

FWHM

800
Wavelength (nm)

250pm
—

@
2
a8

— Laser spectrum
---= dye absorption

N
S

2
3
o N

peak absorption {1/mm) ¢

ehsorption(limmol.cm)
Laser spectrum (au.)

[ =

spectral centroid of SOCT {nmy)

- peak absorption
—+— spectral centraid by SOCT
—&- calculated spectral centroid
. .
100 10° mg
dye concentration (ug/ml)  Xu,etal. Opt. Lett, 29:1647,2004

Plasmon-Reso t Au Nanorods as OCT Contrast Agents

Tunable surface-plasmon (SP) modes
in Au nanorods

Link and
J.Phy:

sdsorbance (3.u)

Alex Wei, Purdue Univ.

Modified Mie calculations of
longitudinal SPin Au nanorods as a
function of aspectratio

800 1200

van der Zande et al, Langmuir 2000, 16, 451 wavelength (nm)




Magnetic Plasmon-Resonant Gold Nanorods Asymmetric Single-Walled Carbon

Nanotube/lron Oxide Nanoparticle Complexes

Synthesis of IONP-GNR Hybrids Using
EDC/Sulfo-NHS (APL1-142).

Summary and Conclusions

» Optical scattering-based images (OCT) frequently exhibit
poor inherent contrast

« Novel scattering, absorbing, and modulating contrast
enhancing techniques have the potential to improve the
diagnostic ability of these imaging techniques

« Significant potential for therapeutic applications

e Exogenous Contrast Agents
-Scattering microspheres & liposomes
-Magnetically-modulated agents
-Absorbing chemical dyes
-Plasmon-resonant nanorods

e Endogenous Spectroscopic Detection
-Spectroscopic OCT (Absorption & Scattering)
-Nonlinear Interferometric Vibrational Imaging (NIVI)
-CARS, SHG, THG

Raman Shif (e
b

et al., Nanoletter

Outline

Lecture 1 (today)

* Optical Coherence Tomography (OCT)
* Beam Delivery Instruments

* Morphological & Cellular OCT Imaging
* Spectroscopic OCT

* Application to Cancer Imaging

Lecture 2 (next week)
* Molecular OCT Imaging
» Contrast Agents for OCT
- Scattering, Absorbing, Modulating Probes
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