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Lecture 12
Introduction to dynamic AFM 
– point mass approximation
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First tip contacts surface with some setpoint normal 
force which is kept constant during the scan

Contact Mode Imaging
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Friction Force Microscopy

3.0µm

Friction force image of a 
self assembled monolayer
(Riefenberger Group) www.chem.nwu.edu/~mkngrp/

Dip-pen lithography

Contact mode oxidation
lithography

 Torsional deflections due to atomic and
molecular friction

 Lateral forces are specific
 Applications to nanotribology, probe

based lithography



Dynamic AFM
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 Cantilever driven near resonance
 The cantilever's resonant frequency, phase and amplitude 

are affected by short-scale force gradients
 In Amplitude Modulated AFM (AM-AFM) or tapping mode, 

driving frequency is fixed while cantilever approaches the 
sample

 In Frequency Modulated AFM (FM-AFM) the phase and 
amplitude are held constant while approaching the sample
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The point mass model
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w(x,t) = A sin(ωt) ψ(x)
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Continuous AFM cantilever

θ/δ=?

Point mass model
w(x,t) = A sin(ωt) ψ(x)
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 Tip is massive, cantilever inertia negligible
 Replace cantilever by a spring of spring constant= static 

bending stiffness of lever
 Cantilever oscillates such that θ/δ=2L/3



Point mass model – free oscillations

 Damped natural frequency is different from natural frequency
 Q can be regarded as number of oscillation cycles before transients      

become small
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General solution of type

x t e
Q Q Q

x t c e c e x xintegration constants to be determined from initial conditions
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Forced vibrations
 Mechanical (acoustic  or 

piezo excitation)
 Magnetic excitation
 Magnetostrictive           

excitation
 Photothermal excitation
 Lorentz force excitation
 Ultrasound excitation
 Direct piezoelectric       

excitation
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Acoustic 
(inertial or 
piezo)

x(t) 
Absolute 
tip motion

y(t)
base motion

Response of acoustically excited levers

 ω0 is the natural freq, ω is the drive freq 
 Maximum amplitude occurs when ω>ω0!
 Base motion amplitude at r=1 is  A/Q!
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 For Q=100, see response above
 Asymmetric peak, amplitude greater 

when ω>ω0
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Response of acoustically excited leversResponse of acoustically excited levers
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Magnetic

x(t) 
Absolute 
tip motion

Response of directly excited AFM levers

Magnetic 
force 
Fmag(t)

 ω0 is the natural freq, ω is the drive freq 
 Maximum amplitude occurs when ω<ω0!
 For ω<<ω0 A=Fmag/k!
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 Asymmetric response with greater    
amplitude when ω<ω0!
 Classical phase response
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Response of directly excited AFM levers



 Highly nonlinear ordinary differential equation
 What happens to frequency response when probe is            

brought close to sample?

Driven point mass model with tip-sample      
interaction
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Experiments with conventional tips  
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 Si tip / HOPG sample z=90 nm, frequency sweep

Lee et al, Phys Rev B (2002)

 When brought closer to sample the tip              
sometimes sticks to the sample
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