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about this lecture

The goal in this lecture is to examine one scattering
mechanism (ADP scattering) in 3D, 2D, and 1D to see
how the scattering rate changes with dimensionality. Then
we’ll compare mobilities in 3D, 2D, and 1D.

This lecture is based on a set of notes prepared by Drs.
George Bourianoff and Dmitri Nikonov of Intel Corporation
with additional contributions by Dr. Sayed Hasan of Intel.
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a guestion

One frequently hears and sees statements to the fact that
guantum confined structures should display higher
mobilities because the lower density of states should
result in less scattering. Is this statement true?
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outline

1) Review of ADP Scattering in 3D
2) ADP Scattering in 2D: MCA
3) ADP Scattering in 2D: FGR
4) ADP Scattering in 1D: FGR

5) Mobility in 1D, 2D, and 3D
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ADP scattering: 3D in a nutshell
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ADP scattering: 3D in a nutshell (ii)
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ADP scattering: 3D in a nutshell (iii)

P, pthp
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guantum confined carriers
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Electrons are free to move in the x-y plane
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guantum confined carriers

Electrons are free to move in the x-y plane
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guantum confined carriers
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momentum conservation approximation

E =g, + 12K2 2
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Intra subband: Ap,=0 p,=0
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N

MCA

E=¢,+n°k} /2m’ Ap,AZ =7

k,=2m/W ) Momentum does not need to
) be strictly conserved!

Recall that for short times,
energy Is not strictly
conserved.
E=¢+r°k/2m’

k= /W Momentum and energy
conservation result from FGR

> /ﬂ in the appropriate limits.
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what changes from 3D?
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(For 3D electrons and 3D phonons)

In this section, we will assume 2D electrons and 3D phonons.

Lundstrom ECE-656 F09 15



2D electrons and 3D phonons

2D electrons:
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Hos|

matrix element for 2D electrons
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form factor
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Momentum conservation is replaced by momentum conservation in the

plane times a “form factor.”
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evaluation of the form factor
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evaluation of the form factor (i)
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3D to 2D re-cap

—>£U o

aCTp', p+hf A TR

+00

—00

2 1 e .
F,, =m(2+5,m,) (infinite barrier well)
U - D k. T
For intraband scattering, the a9 B

scattering rate will be 50%
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2D scattering rate
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2D scattering rate vs. energy
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3D > 1D

1 1

2 2
EXpeCt ‘H p',p‘ = Euac5p',pihﬁ — EUaC5p),(’pxihﬂX F” ‘
y-Z cross-section
W x W
X
1D electrons:
1 ik, o XX
v, (% y,2)=F(y, z)fe .
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form factor in 1D
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1D scattering rate
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2D scattering rate vs. energy
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ADP scattering in 1D, 2D, and 3D
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ADP mobilities due to intravalley scattering

d=1,2,0r3

A =(@2)°

D onry (e

(non-degenerate semiconductor)

With these expression and the previously-derived expressions for
scattering rates, we can readily compare the mobility due to intra-
valley ADP scattering in 1D, 2D, and 3D
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ADP scattering times in 1D, 2D, and 3D
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ADP mobilities in 1D, 2D, and 3D
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1D vs. 2D vs. 3D

1D Nikonov and Bourianoff show that:;
= 16¢,07° 1
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Hn =" "2 T degenerate statistics and phonon
D, (m ) B scattering, the mobility of a quantum
confined device is slightly less than
3D or approximately equal to the
8¢, g’ 1 corresponding bulk mobility.
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temperature dependent ADP mobility in 3D

= 8c,qn’ 1

3702 (m') V2rm® (kT )

T332 power is taken as the

“signature” of acoustic phonon
scattering.

Ky

In 2D, we expect, T-1 behavior.

In 1D, we expect, TV2 behavior.
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more to the story....

1) Confined phonons:

See:

B.K. Ridley, Electrons and Phonons in Semiconductor

Multilayers, Cambridge Univ. Press, Cambridge, UK, 1997.

M. A. Stroscio and M. Dutta, Phonons in Nanostructures,
Cambridge Univ. Press, Cambridge, UK, 2001.
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more to the story...

2) Surface roughness:
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Jing Wang, E. Polizzi, A. Ghosh, S. Datta,
and M. Lundstrom, “A Theoretical
Investigation of Surface Roughness
Scattering in Silicon Nanowire Transistors,”

Appl. Phys. Lett., 87, 043101, 2005.
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a guestion

One frequently hears and sees statements to the fact that
guantum confined structures should display higher
mobilities because the lower density of states should
result in less scattering. Is this statement true?

1 2z, Dy(E)
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F
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Reducing the dimensionality decreases the density of
states, but it also increases the form factor. The two
effects roughly compensate, so for our toy problem, the
mobillity is very similar in all dimensions.
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guestions?

1) Review of ADP Scattering in 3D
2) ADP Scattering in 2D: MCA
3) ADP Scattering in 2D: FGR
4) ADP Scattering in 1D: FGR

5) Mobility in 1D, 2D, and 3D
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