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about this lecture

The goal in this lecture is to examine one scattering 
mechanism (ADP scattering) in 3D, 2D, and 1D to see 
how the scattering rate changes with dimensionality.  Then 
we’ll compare mobilities in 3D, 2D, and 1D.

This lecture is based on a set of notes prepared by Drs. 
George Bourianoff and Dmitri Nikonov of Intel Corporation 
with additional contributions by Dr. Sayed Hasan of Intel.
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a question

One frequently hears and sees statements to the fact that 
quantum confined structures should display higher 
mobilities because the lower density of states should 
result in less scattering.  Is this statement true?
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outline

1) Review of ADP Scattering in 3D

2)  ADP Scattering in 2D:  MCA

3)  ADP Scattering in 2D:  FGR

4)  ADP Scattering in 1D:  FGR

5)  Mobility in 1D, 2D, and 3D
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ADP scattering:  3D in a nutshell
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ADP scattering:  3D in a nutshell (ii)
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ADP scattering:  3D in a nutshell (iii)
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outline

1) Review of ADP Scattering in 3D

2)  ADP Scattering in 2D:  MCA

3)  ADP Scattering in 2D:  FGR

4)  ADP Scattering in 1D:  FGR

5)  Mobility in 1D, 2D, and 3D
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quantum confined carriers
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quantum confined carriers
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quantum confined carriers

D2 D E( )

E

2 2
||
*2n

k
E

m
ε= +



2 22 2

* 22n
n
m W

πε =


ε1 ε2

*

2

m
π

*

22 m
π

( ) ( )
*

2 2
1

D n
n

mD E E ε
π =

= Θ −∑




Lundstrom ECE-656 F09 12

momentum conservation approximation
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Momentum does not need to 
be strictly conserved!

Recall that for short times, 
energy is not strictly 
conserved.

Momentum and energy 
conservation result from FGR 
in the appropriate limits.
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MCA

k||

E

ε1

ε2

2 2 *
1 || 2E k mε= + 

2 2 *
2 || 2E k mε= + 

kz = 2π W

kz = π W

zp z∆ ∆ ≥ 



Lundstrom ECE-656 F09 14

outline

1) Review of ADP Scattering in 3D

2)  ADP Scattering in 2D:  MCA

3)  ADP Scattering in 2D:  FGR

4)  ADP Scattering in 1D:  FGR

5)  Mobility in 1D, 2D, and 3D
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what changes from 3D?
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2D electrons and 3D phonons

3D phonons:
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matrix element for 2D electrons
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form factor
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Momentum conservation is replaced by momentum conservation in the 
plane times a “form factor.”
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evaluation of the form factor
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evaluation of the form factor (ii)
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3D to 2D re-cap
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2D scattering  rate
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2D scattering  rate vs. energy
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outline

1) Review of ADP Scattering in 3D

2)  ADP Scattering in 2D:  MCA

3)  ADP Scattering in 2D:  FGR

4)  ADP Scattering in 1D:  FGR

5)  Mobility in 1D, 2D, and 3D
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3D  1D
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form factor in 1D
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1D scattering  rate

F ′l ,l
2
=

1
2

2 +δ l , ′l( )





2

(infinite barrier well)

( ) ( )2

, ,
2,

x x x

ac
x x p p l l

US p p F E E
L β

π δ δ ω′ ′ ′±′ ′= −


 



Uac =
DA

2kBT
2cl

( ) ( ) 2

,1

,

21 2
2 2

l lD
ac

l l

D E
U

δπ
τ

′

′

 +
=  

  

( )

1/22

1,1 1/22 *

8 1
9 2

l

B LBA

c E
k Tk TD m

τ
 

=  
 



1
τ l , ′l

=
1
τm

= S px, ′px( )
′px

∑

τ11 = τ 0 E kBTL( )1/2

s = +1 / 2

( )

2

0 1/22 *

8 1
9 2

l

BA

c
k TD m

τ =




Lundstrom ECE-656 F09 28

2D scattering  rate vs. energy
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outline

1) Review of ADP Scattering in 3D

2)  ADP Scattering in 2D:  MCA

3)  ADP Scattering in 2D:  FGR

4)  ADP Scattering in 1D:  FGR

5)  Mobility in 1D, 2D, and 3D
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ADP scattering in 1D, 2D, and 3D
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ADP mobilities due to intravalley scattering
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(non-degenerate semiconductor)

With these expression and the previously-derived expressions for 
scattering rates, we can readily compare the mobility due to intra-
valley ADP scattering in 1D, 2D, and 3D
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ADP scattering times in 1D, 2D, and 3D
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ADP mobilities in 1D, 2D, and 3D

µn =
q τ f

m*

1D                         2D                          3D       

( )

2

1/22 *

16 1
9 2

l

BA

c
k TD m

τ
π

=


3

2 *

2 1l

A B

c
D m k T


( )

4

3/22 * *

8 1
3 2

l

BA

c
k TD m mπ π



( )

2

1/22 * *

16 1
9 2

l
n

BA

c q
k TD m m

µ
π

=


( )
3

22 *

2 1l

BA

c q
k TD m



( ) ( )

4

2 3/22 * *

8 1

3 2
l

BA

c q
k TD m mπ π





Lundstrom ECE-656 F09 34

1D vs. 2D vs. 3D
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Nikonov and Bourianoff show that:
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For one suband, with non-
degenerate statistics and phonon 
scattering, the mobility of a quantum 
confined device is slightly less than 
or approximately equal to the 
corresponding bulk mobility.



Lundstrom ECE-656 F09 35

temperature dependent ADP mobility in 3D
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T-3/2 power is taken as the 
“signature” of acoustic phonon 
scattering.

In 2D, we expect, T-1 behavior.

In 1D, we expect, T-1/2 behavior.
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more to the story….

1) Confined phonons:

See:

B.K. Ridley, Electrons and Phonons in Semiconductor 
Multilayers, Cambridge Univ. Press, Cambridge, UK, 1997.

M. A. Stroscio and M. Dutta, Phonons in Nanostructures, 
Cambridge Univ. Press, Cambridge, UK, 2001.
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more to the story…

Drain
Extension

Source
Extension

Gate all
around

L=10 nm

1nm

Si

SiO2

3nm

3nm

Gate

Y

Z

One Slice
ON

OFF

2) Surface roughness:

Jing Wang, E. Polizzi, A. Ghosh, S. Datta, 
and M. Lundstrom, “A Theoretical 
Investigation of Surface Roughness 
Scattering in Silicon Nanowire Transistors,” 
Appl. Phys. Lett., 87, 043101, 2005.
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a question

One frequently hears and sees statements to the fact that 
quantum confined structures should display higher 
mobilities because the lower density of states should 
result in less scattering.  Is this statement true?
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Reducing the dimensionality decreases the density of 
states, but it also increases the form factor.  The two 
effects roughly compensate, so for our toy problem, the 
mobility is very similar in all dimensions.
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questions?

1) Review of ADP Scattering in 3D

2)  ADP Scattering in 2D:  MCA

3)  ADP Scattering in 2D:  FGR

4)  ADP Scattering in 1D:  FGR

5)  Mobility in 1D, 2D, and 3D
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