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outline

1) Umklapp processes

2)  Overlap integrals

3)  ADP scattering in graphene
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scattering of Bloch electrons
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The periodicity of the lattice (Bloch functions) gives rise to additional 
scattering processes (so-called U-processes) and to overlap integrals for 
normal processes (N-processes).
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1D:  periodic functions and Fourier series
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Any periodic function can be expanded as a Fourier series:
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( ) 2 n

x

n n
iG xi nx a

k n n
n n

u x u e u eπ
=+∞ =+∞

=−∞ =−∞

= =∑ ∑ 



un =
1
a

ukx
x( )

cell
∫ e− iGn x

For a good discussion of Fourier series in 1D and 3D, see Ziman, Principles 
of the Theory of Solids, 2nd Ed., Cambridge, 1972 (pp. 6-9)
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3D
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3D
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(momentum conservation)

k k Gβ′ = ± +
   

Umklapp process or  “U-process”
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N-process
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U-process
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U-processes:  extended zone
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intervalley scattering in Si

kx

Si conduction band

ky

kz
“g-type scattering”

“f-type scattering”

smallest phonon 
wavevector occurs for 

a U-process
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scattering of Bloch electrons
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The periodicity of the lattice (Bloch functions) gives rise to:

1)  additional scattering processes (so-called U-processes) and

2)  to overlap integrals for normal processes (N-processes).
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outline

1) Umklapp processes

2)  Overlap integrals

3)  ADP scattering in graphene
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matrix elements for Bloch functions
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Assumes that the scattering potential does not change rapidly on 
the scale of the unit cell.

Presenter
Presentation Notes
assume small p  and p’
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matrix elements for Bloch functions
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some facts about overlap factors

For N-processes (e.g. intra-valley):

I(k,k’) = 1 for parabolic energy bands

for nonparabolic energy bands:
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some more facts about overlap factors

For U-processes (e.g. intervalley:

The angle theta, between k and k’ is mainly fixed 
by the initial and final valley, so we can assume 
that I(k,k’) = 1 and include the effect in the 
deformation potential. 
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some final facts about overlap factors

For holes:

For intra-band scattering (hh  hh or lh  lh)

For inter-band scattering (hh  lh or lh  hh)

( ) ( )21, 1 3cos
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( ) 23, sin
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overlap integrals

B.K. Ridley, Electrons and Phonons in Semiconductor Multilayers, pp. 
60-63, Cambridge, 1997

B.K. Ridley, Quantum Processes in Semiconductors, 4th Ed., pp. 82-86, 
Cambridge, 1997

D.K. Ferry, Semiconductors, pp. 214, 461-464, Macmillan, 1991

C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor 
Device Simulation, pp. 27-30, Springer-Verlag, 1989.

J.H. Davies, The Physics of Low-Dimensional Semiconductors, pp. 
307-308, Cambridge Univ. Press, 1998.

J. Singh, The Physics of Semiconductors and Their Heterostructures, , 
pp. 397-403, McGraw-Hill, 1993.
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outline

1) Umklapp processes

2)  Overlap integrals

3)  ADP scattering in graphene
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graphene

(CNTBands on www.nanoHUB.org)

( ) 2 2
F x y FE k k k kυ υ= ± + = ± 

kx

E

ky

gV = 2

( ) ( )1
g F

dE k
k

d k
υ υ= =







Lundstrom ECE-656 F09 21

3D to graphene

3D result graphene
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3D to graphene (ii)

3D result graphene

same
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3D to graphene (iii)

3D result graphene
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3D to graphene (iv)

3D result graphene
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finally
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independent of carrier density!
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but….

Lundstrom ECE-656 F09

We have missed something important for graphene!

The remainder of the lecture closely follows:

“Lecture Notes on Low Bias Transport in Graphene:  An Introduction,” 
Dionisis Berdebes, Tony Low, and Mark Lundstrom, July 13, 2009

These notes are available at:  http://nanohub.org/resources/7180
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multi-component wavefunctions
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semiconductors
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For small bandgap semiconductors, 
it may be necessary to use a 4-
component wavefunction (or 8 if we 
include SO coupling)
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multi-component wavefunctions
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graphene
E

kx

For graphene, we should expect 
that we will always need to use a 2-
component wavefunction.
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The “a” and “b” refer to the “a” and 
“b” carbon atoms in the graphene 
unit cell.ky
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graphene wavefunction
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matrix element

Lundstrom ECE-656 F09
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The angle θ is now the angle between the incident and scattered 
electron.  Note that direct backscattering (θ = π) is forbidden. The extra 
term in the transition rate looks something like an overlap integral or 
form factor.
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momentum relaxation rate
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The scattering rate is 1/4 of what we computed earlier when we ignored 
the 2-component wavefunction, so the correct approach gives a mobility 
that is 4 times higher than the simpler approach!
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questions

1) Umklapp processes

2)  Overlap integrals

3)  ADP scattering in graphene

Wavefunctions can be important (including the phonons too)!
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