ECE-656: Fall 2009

Lecture 27: Scattering of Bloch electrons

Professor Mark Lundstrom
Electrical and Computer Engineering Purdue University, West Lafayette, IN USA

outline

1) Umklapp processes

2) Overlap integrals
3) ADP scattering in graphene

scattering of Bloch electrons

$$
\begin{aligned}
& \psi_{i}=\frac{1}{\sqrt{N}} u_{\vec{k}}(\vec{r}) \frac{1}{\sqrt{\Omega}} e^{i \vec{p} \cdot \vec{r} / \hbar} \\
& S\left(\vec{p}, \vec{p}^{\prime}\right)=\frac{2 \pi}{\hbar}\left|H_{\vec{p}^{\prime}, \vec{p}}\right|^{2} \delta\left(E^{\prime}-E-\Delta E\right) \quad \psi_{f}=\frac{1}{\sqrt{N}} u_{\vec{k}^{\prime}}(\vec{r}) \frac{1}{\sqrt{\Omega}} e^{i \vec{p}^{\prime} \cdot \vec{r} / \hbar} \\
& H_{\vec{p}^{\prime}, \vec{p}}=\int_{-\infty}^{+\infty} \psi_{f}^{*} U_{S}(\vec{r}) \psi_{i} d \vec{r}
\end{aligned}
$$

The periodicity of the lattice (Bloch functions) gives rise to additional scattering processes (so-called U-processes) and to overlap integrals for normal processes (N-processes).

1D: periodic functions and Fourier series

$\psi(x)=\frac{1}{\sqrt{N}} l_{k_{x}}(x) \frac{1}{\sqrt{L}} e^{i k_{x} x}$
$u_{k_{x}}(x)=u_{k_{x}}(x+a) \quad$ Periodic with lattice spacing a

Any periodic function can be expanded as a Fourier series:
$u_{k_{x}}(x)=\sum_{n=-\infty}^{n=+\infty} \tilde{u}_{n} e^{i 2 \pi n x / a}=\sum_{n=-\infty}^{n=+\infty} \tilde{u}_{n} e^{i G_{n} x} \quad \tilde{u}_{n}=\frac{1}{a} \int_{\text {cell }} u_{k_{x}}(x) e^{-i G_{n} x}$
$G_{n}=n(2 \pi / a) \quad$ Reciprocal lattice vector in 1D
For a good discussion of Fourier series in 1D and 3D, see Ziman, Principles of the Theory of Solids, $2^{\text {nd }}$ Ed., Cambridge, 1972 (pp. 6-9)

3D

$$
\begin{aligned}
& \psi_{i}=u_{\vec{k}}(\vec{r}) \frac{1}{\sqrt{\Omega}} e^{i \vec{k} \cdot \vec{r}}=\sum_{\vec{G}_{n}} \tilde{u}_{n} e^{i \vec{G}_{n} \cdot \vec{r}} \frac{1}{\sqrt{\Omega}} e^{i \vec{k} \cdot \vec{r}} \\
& \psi_{f}=u_{\vec{k}^{\prime}}(\vec{r}) \frac{1}{\sqrt{\Omega}} e^{i \vec{k}^{\prime} \cdot \vec{r}}=\sum_{\vec{G}_{m}} \tilde{u}_{m} e^{i \vec{G}_{m} \cdot \vec{r}} \frac{1}{\sqrt{\Omega}} e^{i \overrightarrow{k^{\prime}} \cdot \vec{r}}
\end{aligned}
$$

$$
H_{\vec{p}^{\prime}, \vec{p}}=\int_{-\infty}^{+\infty} \psi_{f}^{*} U_{S}(\vec{r}) \psi_{i} d \vec{r} \quad U_{S}(\vec{r})=A_{\beta} e^{ \pm i \vec{\beta} \cdot \vec{r}}
$$

$$
H_{\vec{p}^{\prime}, \vec{p}}=\frac{1}{\Omega} \int_{-\infty}^{+\infty} \sum_{\vec{G}_{m}}\left(\tilde{u}_{m}^{*} e^{-i \vec{G}_{m} \cdot \vec{r}} e^{-i \vec{k}^{\prime} \cdot \vec{r}}\right) A_{\beta} e^{ \pm i \vec{\beta} \cdot \vec{r}}\left(\sum_{\vec{G}_{n}} \tilde{u}_{n} e^{i \vec{G}_{n} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{r}}\right) d \vec{r}
$$

$$
H_{\vec{p}^{\prime}, \vec{p}}=\sum_{\vec{G}_{m}} \tilde{u}_{m}^{*} \sum_{\vec{G}_{n}} \tilde{u}_{n} \frac{1}{\Omega} \int_{-\infty}^{+\infty}\left(e^{-i \vec{G}_{m} \cdot \vec{r}} e^{-i \vec{k}^{\prime} \cdot \vec{r}}\right) A_{\beta} e^{ \pm i \vec{\beta} \cdot \vec{r}}\left(e^{i \vec{G}_{n} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{r}}\right) d \vec{r}
$$

3D

$$
\begin{aligned}
& H_{\vec{p}^{\prime}, \vec{p}}=\sum_{m, n} \tilde{u}_{m}^{*} \tilde{u}_{n} \frac{1}{\Omega} \int_{-\infty}^{+\infty} A_{\beta}\left(e^{-i\left(\vec{k}^{\prime}-\vec{k} \neq \vec{\beta}-\vec{G}_{n}+\vec{G}_{m}\right) \cdot \vec{r}}\right) d \vec{r} \\
& H_{\vec{p}^{\prime}, \bar{p}}=\sum_{m, n} \tilde{u}_{m}^{*} \tilde{u}_{n} A_{\beta} \delta_{\bar{k}^{\prime}, \vec{k}+\vec{\beta}+\left(\vec{G}_{n}-\vec{G}_{m}\right)}
\end{aligned}
$$

$\vec{k}^{\prime}=\vec{k} \pm \vec{\beta} \quad$ normal process or N-process
(momentum conservation)

$$
\overrightarrow{k^{\prime}}=\vec{k} \pm \vec{\beta}+\vec{G} \quad \text { Umklapp process or "U-process" }
$$

N-process

phonon absorption

(after Kittel, Intro to Solid State Phys.,4 ${ }^{\text {th }}$ Ed., Fig. 23, p. 229)

U-process

phonon absorption

(after Kittel, Intro to Solid State Phys.,4 ${ }^{\text {th }}$ Ed., Fig. 23, p. 229)

U-processes: extended zone

$\vec{k}^{\prime}=\vec{k}+\vec{\beta}+\vec{G}$

(after Ziman, Fig. 124, p. 226

intervalley scattering in Si

Si conduction band

scattering of Bloch electrons

The periodicity of the lattice (Bloch functions) gives rise to:

1) additional scattering processes (so-called U-processes) and
2) to overlap integrals for normal processes (N-processes).

outline

1) Umklapp processes
2) Overlap integrals
3) ADP scattering in graphene

matrix elements for Bloch functions

$$
\begin{gathered}
\psi_{f}=\frac{1}{\sqrt{N}} u_{\vec{k}^{\prime}}(\vec{r}) \frac{1}{\sqrt{\Omega}} e^{i \bar{p}^{\prime} \cdot \vec{r} / \hbar} H_{\vec{p}^{\prime}, \vec{p}}=\int_{-\infty}^{+\infty} \psi_{f}^{*} U_{S}(\vec{r}) \psi_{i} d \vec{r} \quad \psi_{i}=\frac{1}{\sqrt{N}} u_{\vec{k}}(\vec{r}) \frac{1}{\sqrt{\Omega}} e^{i \vec{p} \cdot \vec{r} / \hbar} \\
H_{\vec{p}^{\prime}, \vec{p}}=\int_{-\infty}^{+\infty}\left(\frac{1}{\sqrt{N}} u_{\vec{k}^{\prime}}^{*}(\vec{r}) \frac{1}{\sqrt{\Omega}} e^{-i \bar{p}^{\prime} \cdot \vec{r} / \hbar}\right) U_{s}(\vec{r})\left(\frac{1}{\sqrt{N}} u_{\vec{k}}(\vec{r}) \frac{1}{\sqrt{\Omega}} e^{i \overrightarrow{\vec{p}} \cdot \vec{r} / \hbar}\right) d^{\vec{r}}
\end{gathered}
$$

$$
H_{p, r_{p}}^{r_{r}} \approx \int \text { rapidly varying part } \times \int \text { slowly varying part }
$$

$$
H_{\vec{p}^{\prime}, \vec{p}}=N \int_{\text {cell }}\left(\frac{1}{\sqrt{N}} u_{\vec{k}^{\prime}}^{*}(\vec{R}) \frac{1}{\sqrt{N}} u_{\vec{k}}(\vec{R}) d \vec{R}\right) \times \frac{1}{\Omega} \int_{\Omega} e^{-i \vec{p}^{\prime} \cdot \vec{r} / \hbar} U_{S}(\vec{r}) e^{i \vec{p} \cdot \vec{r} / \hbar} d \vec{r}
$$

Assumes that the scattering potential does not change rapidly on the scale of the unit cell.

matrix elements for Bloch functions

$$
\begin{gathered}
H_{\vec{p}^{\prime}, \vec{p}}=N \int_{\text {cell }}\left(\frac{1}{\sqrt{N}} u_{\vec{k}^{\prime}}^{*}(\vec{R}) \frac{1}{\sqrt{N}} u_{\vec{k}}(\vec{R}) d \vec{R}\right) \times \frac{1}{\Omega} \int_{\Omega} e^{-i \vec{p}^{\prime} \cdot \vec{r} / \hbar} U_{S}(\vec{r}) e^{i \vec{p} \cdot \vec{r} / \hbar} d \vec{r} \\
H_{\vec{p}^{\prime}, \vec{p}}=I\left(\vec{k}, \overrightarrow{k^{\prime}}\right) \times \frac{1}{\Omega} \int_{\Omega} e^{-i \vec{p}^{\prime} \cdot \vec{r} / \hbar} U_{S}(\vec{r}) e^{i \vec{p} \cdot \vec{r} / \hbar} d \vec{r} \\
I\left(\vec{k}, \vec{k}^{\prime}\right)=\int_{\text {cell }} u_{\vec{k}^{\prime}}^{*}(\vec{R}) u_{\vec{k}}(\vec{R}) d \vec{l}
\end{gathered}
$$

some facts about overlap factors

For N-processes (e.g. intra-valley):
$I\left(k, k^{\prime}\right)=1$ for parabolic energy bands for nonparabolic energy bands:

$$
\begin{aligned}
& E(1+\alpha E)=\frac{\hbar^{2} k^{2}}{2 m^{*}} \\
& I\left(\vec{k}, \overrightarrow{k^{\prime}}\right)=\frac{\left[(1+\alpha E)^{1 / 2}\left(1+\alpha E^{\prime}\right)^{1 / 2}+\alpha\left(E E^{\prime}\right)^{1 / 2} \cos \theta\right]^{2}}{(1+2 \alpha E)\left(1+2 \alpha E^{\prime}\right)}
\end{aligned}
$$

some more facts about overlap factors

For U-processes (e.g. intervalley:
The angle theta, between k and k^{\prime} is mainly fixed by the initial and final valley, so we can assume that $l\left(k, k^{\prime}\right)=1$ and include the effect in the deformation potential.

some final facts about overlap factors

For holes:
For intra-band scattering (hh \rightarrow hh or $\mathrm{Ih} \rightarrow \mathrm{lh}$)

$$
I\left(\vec{k}, \vec{k}^{\prime}\right)=\frac{1}{4}\left(1+3 \cos ^{2} \theta\right)
$$

For inter-band scattering (hh $\rightarrow \mathrm{lh}$ or $\mathrm{lh} \rightarrow \mathrm{hh}$)

$$
I\left(\vec{k}, \vec{k}^{\prime}\right)=\frac{3}{4} \sin ^{2} \theta
$$

overlap integrals

B.K. Ridley, Quantum Processes in Semiconductors, $4^{\text {th }}$ Ed., pp. 82-86, Cambridge, 1997
B.K. Ridley, Electrons and Phonons in Semiconductor Multilayers, pp. 60-63, Cambridge, 1997
D.K. Ferry, Semiconductors, pp. 214, 461-464, Macmillan, 1991
C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation, pp. 27-30, Springer-Verlag, 1989.
J.H. Davies, The Physics of Low-Dimensional Semiconductors, pp. 307-308, Cambridge Univ. Press, 1998.
J. Singh, The Physics of Semiconductors and Their Heterostructures, , pp. 397-403, McGraw-Hill, 1993.

outline

1) Umklapp processes
2) Overlap integrals
3) ADP scattering in graphene

graphene

(CNTBands on www.nanoHUB.org)

$$
\begin{aligned}
& E(k)= \pm \hbar v_{F} \sqrt{k_{x}^{2}+k_{y}^{2}}= \pm \hbar v_{F} k \\
& v_{g}(\vec{k})=\frac{1}{\hbar} \frac{d E(k)}{d k}=v_{F}
\end{aligned}
$$

3D to graphene

3D result

$$
S\left(\vec{p}, \vec{p}^{\prime}\right)=\frac{2 \pi}{\hbar}\left|H_{p^{\prime}, p}\right|^{2} \delta\left(E^{\prime}-E \mp \hbar \omega\right)
$$

$$
H_{p^{\prime}, p}=\frac{1}{\Omega} \int_{-\infty}^{+\infty} e^{-i \vec{p}^{\prime} \cdot \vec{r} / \hbar} U_{S}(\vec{r}) e^{i \vec{p} \cdot \vec{r} / \hbar} d \vec{r}
$$

$$
U_{S}=\sum_{\beta} K_{\beta} u_{\beta}
$$

$$
\left|K_{\beta}\right|^{2}=\beta^{2} D_{A}^{2}
$$

graphene

p and p ' are 2D vectors
$H_{p^{\prime}, p}=\frac{1}{A} \int_{-\infty}^{+\infty} e^{-i \overrightarrow{p_{i}^{\prime}} \cdot \vec{\rho} / \hbar} U_{S}(\vec{r}) e^{i \vec{p}_{i} \cdot \vec{\rho} / \hbar} d \vec{\rho}$
β is a 2D vector
same

3D to graphene (ii)

3D result

$u_{\beta}(\vec{r})=A_{\beta} e^{ \pm i \bar{\beta} \cdot \vec{r}}$
$\left|A_{\beta}\right|^{2}=\frac{\hbar}{2 \rho \Omega \omega}\left(N_{\omega}+\frac{1}{2} \mp \frac{1}{2}\right)$
$N_{\omega}=\frac{1}{e^{\hbar \omega / k_{B} T}-1} \approx \frac{k_{B} T}{\hbar \omega}$
$N_{\omega} \approx N_{\omega}+1$

graphene

β is a 2D vector

$$
\begin{array}{r}
\left|A_{\beta}\right|^{2}=\frac{\hbar}{2 \rho_{m} A \omega}\left(N_{\omega}+\frac{1}{2} \mp \frac{1}{2}\right) \\
\rho_{m}: \mathrm{Kg} / \mathrm{m}^{2}
\end{array}
$$

same
same

3D to graphene (iii)

3D result

graphene

$$
\begin{aligned}
& H_{p^{\prime}, p}=\frac{1}{\Omega} \int_{-\infty}^{+\infty} e^{-i \vec{p}_{1}^{\prime} \cdot \vec{r} / \hbar}\left(\sum_{\beta} K_{\beta} u_{\beta}\right) e^{i \vec{p} \cdot \vec{r} / \hbar} d^{\rightarrow} r \rightarrow \frac{1}{A} \int_{-\infty}^{+\infty} e^{-i \vec{p}_{\|}^{\prime} \cdot \vec{\rho} / \hbar}\left(\sum_{\beta} K_{\beta} u_{\beta}\right) e^{i \vec{p}_{\|} \cdot \vec{\rho} / \hbar} d \vec{\rho} \\
& \left|H_{p^{\prime}, p}\right|^{2}=U_{a c} \frac{1}{\Omega}\left|\int_{-\infty}^{+\infty} e^{-i \vec{p}^{\prime} \cdot \vec{r} / \hbar}\left(e^{ \pm i \vec{\beta} \cdot \vec{r}}\right) e^{i \vec{p} \cdot \vec{r} / \hbar} d \vec{r}\right|^{2} \rightarrow U_{a c} \frac{1}{A}\left|\int_{-\infty}^{+\infty} e^{-i \vec{p}_{\|}^{\prime} \cdot \vec{\rho} / \hbar}\left(e^{ \pm i \vec{\beta}_{\|} \cdot \vec{\rho}}\right) e^{i \overrightarrow{p_{\|}} \cdot \vec{\rho} / \hbar} d \vec{r}\right|^{2} \\
& U_{a c}=\left|K_{\beta}\right|^{2}\left|A_{\beta}\right|^{2}=\frac{D_{A}^{2} k_{B} T}{2 c_{l}} \\
& U_{a c}=\frac{D_{A}^{2} k_{B} T}{2 \rho_{m} v_{s}^{2}} \quad v_{s}=\sqrt{c_{l} / \rho_{m}} \\
& \left|H_{p^{\prime}, p}\right|^{2}=\frac{1}{\Omega} U_{a c} \delta_{\vec{p}^{\prime}, \vec{p} \pm \hbar \vec{\beta}} \\
& \left|H_{p^{\prime}, p}\right|^{2}=\frac{1}{\Omega} U_{a c} \delta_{\vec{p}_{\|}^{\prime}, \vec{p}_{\|} \pm \hbar \vec{\beta}_{\|}}
\end{aligned}
$$

3D to graphene (iv)

3D result

$S\left(\vec{p}, \vec{p}^{\prime}\right)=\frac{2 \pi}{\hbar} \frac{U_{a c}}{\Omega} \delta_{\vec{p}^{\prime}, \vec{p}+\hbar \bar{\beta}} \delta\left(E^{\prime}-E\right)$
$U_{a c}=\frac{D_{A}^{2} k_{B} T}{2 c_{l}}$
$\frac{1}{\tau}=\frac{1}{\tau_{m}}=\sum_{\vec{p}^{\prime}} S\left(\vec{p}, \vec{p}^{\prime}\right)$
$\frac{1}{\tau}=\frac{2 \pi}{\hbar} U_{a c} \frac{D_{3 D}(E)}{2}$

graphene

$$
\begin{aligned}
& S\left(\vec{p}_{\|}, \vec{p}_{\|}\right)=\frac{2 \pi}{\hbar} \frac{U_{a c}}{A} \delta_{\vec{p}_{\|}^{\prime}, \vec{p}_{\|} \pm \hbar \vec{p}_{\|}} \delta\left(E^{\prime}-E\right) \\
& U_{a c}=\frac{D_{A}^{2} k_{B} T}{2 \rho_{m} v_{s}^{2}} \\
& \frac{1}{\tau}=\frac{1}{\tau_{m}}=\sum_{\vec{p}_{\|}^{\prime}} S\left(\vec{p}_{\|}, \vec{p}_{\| \|}^{\prime}\right) \\
& \frac{1}{\tau}=\frac{2 \pi}{\hbar} U_{a} \frac{D(E)}{4} D(E)=\frac{2 E}{\pi \hbar^{2} v_{F}^{2}}
\end{aligned}
$$

intravalley

finally

$$
\begin{array}{ll}
\frac{1}{\tau}=\frac{1}{\tau_{a b s}}+\frac{1}{\tau_{e m s}}=\frac{2 \pi}{\hbar} U_{a c} \frac{D(E)}{2} & U_{a c}=\frac{D_{A}^{2} k_{B} T}{2 \rho_{m} v_{s}^{2}} \quad D(E)=\frac{2 E}{\pi \hbar^{2} v_{F}^{2}} \quad(E>0) \tag{E>0}\\
\frac{1}{\tau}=\frac{D_{A}^{2} k_{B} T}{\hbar^{3} \rho_{m}\left(v_{F} v_{s}\right)^{2}} E(E>0) & \mu_{A D P}=\frac{q \tau\left(E_{F}\right)}{E_{F} / v_{F}^{2}}=\frac{q \hbar^{3} \rho_{m} v_{F}^{4} v_{s}^{2}}{D_{A}^{2} k_{B} T} \frac{1}{E_{F}^{2}} \\
\tau=\tau_{0}\left(E / k_{B} T\right)^{-1} & n_{S}=E_{F}^{2} / \pi \hbar^{2} v_{F}^{2} \\
\tau_{0}=\frac{\hbar^{3} \rho_{m}\left(v_{F} v_{s}\right)^{2}}{D_{A}^{2}\left(k_{B} T\right)^{2}} & \mu_{A D P}=\left(\frac{q \hbar \rho_{m} v_{F}^{2} v_{s}^{2}}{\pi D_{A}^{2} k_{B} T} \frac{1}{n_{S}}\right. \\
\mu_{A D P} \neq \frac{q\langle\langle\tau\rangle\rangle}{m^{*}} m^{*}=E_{F} / v_{F}^{2} & \sigma_{S}=n_{S} q \mu_{A D P}=\left(\frac{q^{2} \hbar \rho_{m} v_{F}^{2} v_{s}^{2}}{\pi D_{A}^{2} k_{B} T}\right)
\end{array}
$$

but....

We have missed something important for graphene!

The remainder of the lecture closely follows:
"Lecture Notes on Low Bias Transport in Graphene: An Introduction," Dionisis Berdebes, Tony Low, and Mark Lundstrom, July 13, 2009

These notes are available at: http://nanohub.org/resources/7180

multi-component wavefunctions

semiconductors

Can often use a single $\psi_{c}(\vec{r})$

Should use a two
component wavefunction (or 3 if we include SO coupling).

$$
\binom{\psi_{h h}(\vec{r})}{\psi_{l h}(\vec{r})}
$$

For small bandgap semiconductors, it may be necessary to use a 4component wavefunction (or 8 if we include SO coupling)

multi-component wavefunctions

graphene

For graphene, we should expect that we will always need to use a 2component wavefunction.

$$
\binom{\psi_{a}(\vec{\rho})}{\psi_{b}(\vec{\rho})}
$$

The "a" and "b" refer to the "a" and "b" carbon atoms in the graphene unit cell.

graphene wavefunction

graphene

$$
\begin{aligned}
& \Psi(x, y)=\frac{1}{\sqrt{2}}\binom{1}{s e^{i \theta}} \frac{1}{\sqrt{A}} e^{i k_{1} \cdot \rho_{p}} \\
& s=\operatorname{sgn}(E) \quad \theta=\arctan \left(k_{y} / k_{x}\right) e^{i \theta}=\left(k_{x}+i k_{y}\right) / k \\
& \int \Psi^{+} \Psi d \vec{\rho}=\int\binom{\Psi_{a}}{\Psi_{b}}^{\dagger}\left(\begin{array}{ll}
\Psi_{a} & \Psi_{b}
\end{array}\right)^{d \vec{\rho}=} \\
& =\int \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & \left.s e^{-i \theta}\right)
\end{array}\right) \frac{e^{-i k_{1} \cdot \vec{\rho}}}{\sqrt{A}} \frac{1}{\sqrt{2}}\binom{1}{s e^{i \theta \theta}} \frac{e^{i \bar{k}_{1} \cdot \bar{\rho}}}{\sqrt{A}} d \vec{\rho} \\
& =\frac{1}{2}\left(1+s^{2}\right) \frac{1}{A} \int e^{-i \vec{k}_{t} \cdot \vec{p}} e^{i \vec{k}_{k} \cdot \vec{\rho}} d \vec{\rho} \\
& \text { Lundstrgm ECE-656 F09 }
\end{aligned}
$$

matrix element

$$
\begin{aligned}
& H_{p^{\prime}, p}=\frac{1}{A} \int_{-\infty}^{+\infty} e^{-i \vec{p}_{\|}^{\prime} \cdot \vec{\rho} / \hbar} U_{S}(\vec{\rho}) e^{i \overrightarrow{p_{i}} \cdot \vec{\rho} / \hbar} d \vec{\rho} \rightarrow \int_{-\infty}^{+\infty} \Psi^{\prime \dagger}\left[U_{S}(\vec{\rho})\right] \Psi d \vec{\rho} \\
& {\left[U_{S}(\vec{\rho})\right]=\left[\begin{array}{ll}
U_{S}^{a a} & U_{S}^{a b} \\
U_{S}^{b a} & U_{S}^{b b}
\end{array}\right] \approx U_{a c}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad U_{a c}=\frac{D_{A}^{2} k_{B} T}{2 \rho_{m} v_{s}^{2}}} \\
& S\left(p_{\|}, p_{\|}^{\prime}\right)=\frac{2 \pi}{\hbar}\left[\frac{1}{2}(1+\cos \theta)\right] U_{a c} \delta_{\vec{p}_{\|}^{\prime}, \overrightarrow{p_{\|}} \pm \hbar \bar{\beta}_{\|}} \delta\left(E^{\prime}-E\right)
\end{aligned}
$$

The angle θ is now the angle between the incident and scattered electron. Note that direct backscattering $(\theta=\pi)$ is forbidden. The extra term in the transition rate looks something like an overlap integral or form factor.

momentum relaxation rate

$$
S\left(p_{\|}, p_{\|}^{\prime}\right)=\frac{2 \pi}{\hbar}\left[\frac{1}{2}(1+\cos \theta)\right] U_{a c} \delta_{\bar{p}_{j}^{\prime}, \bar{p}_{1}+n \bar{\beta}} \delta\left(E^{\prime}-E\right) \quad U_{a c}=\frac{D_{A}^{2} k_{B} T}{2 \rho_{m} v_{s}^{2}}
$$

$$
\begin{aligned}
& \frac{1}{\tau_{m}(E)}=\sum_{p_{\|}^{\prime}}(1-\cos \theta) S\left(p_{\|}, p_{\|}^{\prime}\right) \\
& \frac{1}{\tau_{m}(E)}=\frac{D_{A}^{2} k_{B} T}{4 \hbar^{3} \rho_{m}\left(v_{F} v_{S}\right)^{2}} E
\end{aligned}
$$

The scattering rate is $1 / 4$ of what we computed earlier when we ignored the 2-component wavefunction, so the correct approach gives a mobility that is 4 times higher than the simpler approach!

questions

1) Umklapp processes
2) Overlap integrals
3) ADP scattering in graphene

Wavefunctions can be important (including the phonons too)!

