velocity vs. field characteristics

\(\langle v_x \rangle \)

\(10^7 \text{ cm/s} \)

\(10^4 \text{ V/cm} \)

\(E_x \)

Si

GaAs
outline

1) Brief Introduction
2) **Current Equation**
3) Qualitative features of high field transport
4) Saturated velocity
5) Electron temperature model
6) Survey of results
7) Quick Summary

current equation

\[J_{nx} = nq\mu_nE_x + 2\mu_n \frac{d(nu_{sx})}{dx} \]

This is an “exact” steady-state current equation, but….

\[\mu_n[f(\vec{r},\vec{p},t)] \]
\[u_{sx}[f(\vec{r},\vec{p},t)] = \left\langle \frac{1}{2} p_z v_z \right\rangle \]
current equation: bulk semiconductor

bulk semiconductor: \(E_x, u_{xx} \approx \text{constant} \)

\[
J_n = n q \mu_n E_x + q D_n \frac{dn}{dx}
\]

\[
D_n = \frac{2u_{xx}}{\mu_n q}
\]

near equilibrium: \(u_{xx} \approx \frac{k_B T_i}{q} \)

field-dependent mobility

\[
J_n = n q \mu_n E_x + q D_n \frac{dn}{dx}
\]

Goal: Find mobility and diffusion coefficient without solving BTE

In general, however:

\[
\mu_n \left[f(\vec{r}, \vec{p}, t) \right] \quad D_n \left[f(\vec{r}, \vec{p}, t) \right]
\]

In a bulk semiconductor, \(f \) is determined by \(E \), so there is a one-to-one mapping between \(E \) and \(f \).

\[
\mu_n(E) \quad D_n(E)
\]

Electric field dependent mobility and diffusion coefficient.
The concept of a field-dependent mobility applies only when the electric field changes slowly with position.

Outline

1) Quick introduction
2) Current Equation
3) **Qualitative features of high field transport**
4) Saturated velocity
5) Electron temperature model
6) Survey of results
7) Brief summary
covalent vs. polar semiconductors

average energy vs. electric field
average velocity vs. electric field

- Covalent (100) direction: \(\langle v_x \rangle \) vs. \(E_x \)
 - \(\langle v_x \rangle \) approximately \(10^7 \) as \(E_x \) increases

- Polar (111) direction: \(\langle v_x \rangle \) vs. \(E_x \)
 - \(\langle v_x \rangle \) approximately \(2 \times 10^7 \) as \(E_x \) increases

mobility and diffusion coefficient

- Mobility \(\mu_n \) vs. \(E_x \)
 - As \(E_x \) increases, \(\mu_n \) decreases

- Diffusion coefficient \(D_n \) vs. \(E_x \)
 - \(D_n \) is approximately \(\frac{2u_{sx}}{q} \) as \(E_x \) increases

\[\frac{D_n}{\mu_n} = \frac{2u_{sx}}{q} \]
1) Quick introduction
2) Current Equation
3) Qualitative features of high field transport
4) Saturated velocity
5) Electron temperature model
6) Survey of results
7) Brief summary

can we calculate \(\nu_{\text{SAT}} \)?

\[
\mu_n = \frac{q \langle \tau_m \rangle}{m^*} \text{ (momentum balance)}
\]

\[
J_m E_x = \frac{n(u - u_0)}{\langle \tau_k \rangle} \text{ (energy balance)}
\]

\[
nq \mu_n E_x^2 = \frac{n(u - u_0)}{\langle \tau_E \rangle}
\]

\[
u = u_0 + \tau_k q \mu_n E_x^2 = u_0 + \frac{\langle \tau_k \rangle \langle \tau_m \rangle}{m^*} q^2 E_x^2 \approx \frac{\langle \tau_E \rangle \langle \tau_m \rangle}{m^*} q^2 E_x^2
\]

\[
\langle \tau_m \rangle \approx \langle \tau \rangle \text{ (ave. time between collisions)}
\]

\[
\langle \tau_E \rangle \approx \frac{u}{\hbar \omega_0} \langle \tau \rangle = \frac{u}{\hbar \omega_0} \langle \tau_m \rangle
\]
can we calculate ν_{SAT}?

$$\mu_n = \frac{q \langle \tau_m \rangle}{m^*}$$

$$u = \frac{\langle \tau_E \rangle \langle \tau_m \rangle}{m^*} q^2 \mathcal{E}_x^2$$

$$\langle \tau_m \rangle \approx \frac{u}{\hbar \omega_0} \langle \tau \rangle = \frac{u}{\hbar \omega_0} \langle \tau_m \rangle$$

$$\langle \tau \rangle = \frac{\langle \tau_m \rangle^2}{\hbar \omega_0 m^* q^2 \mathcal{E}_x^2}$$

$$\langle \nu_x \rangle = \mu_n \mathcal{E}_x \rightarrow \nu_{\text{SAT}} = \sqrt{\frac{\hbar \omega_0}{m^*}}$$

Saturation Velocity

<table>
<thead>
<tr>
<th>Material</th>
<th>$\hbar \omega_0$</th>
<th>ν_{SAT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.063 eV</td>
<td>1.0×10^7 cm/s</td>
</tr>
<tr>
<td>Ge</td>
<td>0.037 eV</td>
<td>0.6×10^7 cm/s</td>
</tr>
<tr>
<td>SiC</td>
<td>0.12 eV</td>
<td>1.5×10^7 cm/s</td>
</tr>
</tbody>
</table>
outline

1) Quick introduction
2) Current Equation
3) Qualitative features of high field transport
4) Saturated velocity
5) Electron temperature model
6) Survey of results
7) Brief summary

electron temperature approach

1) Goal: to compute $\langle v_x \rangle = v_{dx} (E)$

2) Assume: $f(\vec{p}) = e^{-[p-m^*v_x]^2/2m^*k_BT_e}$
electron temperature approach

\[f(\tilde{p}) = e^{-\frac{1}{2}m^*\tilde{v}_p \tilde{v}_p^T / m^*k_BT_e} \]

2 unknowns: \(\nu_{dx}, T_e \) ...need 2 equations

1) Momentum balance:
 \[J_{nx} = nq \mu_n \mathcal{E}_x \rightarrow \nu_{dx} = -\mu_n \mathcal{E}_x \]

2) Energy balance:
 \[J_{nx} \mathcal{E}_x = nq \mu_n \mathcal{E}_x^2 = \frac{n(u - u_0)}{\tau_E} \]

\[u = u_0 + q \langle \tau_E \rangle \mu_n \mathcal{E}_x = u_0 + \frac{q^2 \langle \tau_E \rangle \langle \tau_m \rangle \mathcal{E}_x^2}{m^*} \]

\[u_0 \approx \frac{3}{2} k_B T_L \]

\[u = \frac{3}{2} k_B T_e \quad \text{(neglects drift energy)} \]

\[\frac{T_e}{T_L} = 1 + \frac{2q^2 \langle \tau_E \rangle \langle \tau_m \rangle \mathcal{E}_x^2}{3k_B T_L m^*} \]

\[\nu_{dx} = -\mu_n (T_e) \mathcal{E}_x \]

\[T_e = 1 + \frac{2q^2 \langle \tau_E \rangle \langle \tau_m \rangle \mathcal{E}_x^2}{3k_B T_L m^*} \]
aside: neglect of the drift energy

\[u = \frac{1}{2} m^* \vec{v}_d^2 + \frac{3}{2} k_B T_e = \frac{3}{2} k_B T_e \]

\[\frac{m^* \vec{v}_d^2 / 2}{3k_B T_e / 2} \ll 1? \]

\[\vec{v}_d^2 = \mu_n^2 E_x^2 = \frac{q^2 \langle \tau_m \rangle^2 E_x^2}{m^*} \]

\[\frac{T_e}{T_L} = 1 + \frac{2q^2 \langle \tau_E \rangle \langle \tau_m \rangle E_x^2}{3k_B T_L m^*} \approx \frac{3}{2} \frac{k_B T_e}{m^*} \]

\[\frac{m^* \vec{v}_d^2 / 2}{3k_B T_e / 2} \frac{\langle \tau_m \rangle}{\langle \tau_E \rangle} \ll 1 \]

typically well-satisfied

electron temperature model

\[f(\vec{p}) = e^{-\frac{\vec{p} \cdot \vec{v}_d}{2m^*k_B T_e}} \]

\[\vec{v}_{dx} = -\mu_n (T_e) E_x \]

\[\frac{T_e}{T_L} = 1 + \frac{2\mu_n \langle \tau_E \rangle}{3k_B T_L} E_x^2 \]

need to specify:

\[\mu_n (T_e) \text{ or } \langle \tau_m \rangle (T_e) \text{ and } \langle \tau_E \rangle (T_e) \]

“it can be shown”

\[\mu_n (T_e) = \mu_0 \sqrt{T_L / T_e} \text{ (ADP)} \]

\[\mu_n (T_e) = \mu_0 (T_e / T_L)^{3/2} \text{ (II)} \]

for ODP IV scattering in Si:

\[\frac{1}{\langle \tau_E \rangle} = \frac{2}{3} \frac{C}{k_B T_L} \sqrt{T_L / T_e} \]

\[C \approx 10^{-8} \text{ W} \]
the procedure

1) Identify the scattering mechanism that controls momentum relaxation

 e.g. ADP scattering in Si \[\mu_n(T_e) = \mu_0 \sqrt{T_L/T_e} \]

2) Identify the scattering mechanism that controls energy relaxation

 e.g. IV scattering in Si \[\frac{1}{\tau_E} = \frac{2}{3} C \frac{E}{k_B T_L} \sqrt{T_L/T_e} \]

3) Solve the energy balance equation for \(T_e \)

 \[\frac{T_e}{T_L} = 1 + \frac{2\mu_n(\tau_E)}{3k_B T_L} E_x^2 \]

result (for silicon)

\[\frac{T_e}{T_L} = 1 + \frac{q\mu_n(0)}{C} E_x^2 = 1 + \left(\frac{E}{E_C} \right)^2 \quad E_C \approx 7 \times 10^3 \text{ V/cm} \]

\[\frac{T_e}{T_L} = 1 + \frac{q\mu_n(0)}{C} E_x^2 = 1 + \left(\frac{E}{E_C} \right)^2 \quad E_C \approx 7 \times 10^3 \text{ V/cm} \]

![Graph showing \(\frac{T_e}{T_L} \) vs. \(E \)]

\[\mu_n(T_e) = \mu_0 \sqrt{T_L/T_e} = \frac{\mu_n(0)}{\sqrt{1 + \left(\frac{E}{E_C} \right)^2}} \]
velocity vs. field characteristic

\[\mu_n(T_e) = \frac{\mu_{n0}}{\sqrt{1 + (E/E_C)^2}} \]

\[v_d = \mu_n(T_e)E = \frac{\mu_{n0}E}{\sqrt{1 + (E/E_C)^2}} \]

\[v_{SAT} = \mu_{n0}E_c = 1 \times 10^7 \text{ cm/s} \]

high- field diffusion

\[D_n = \frac{k_B T_e}{q} \mu_n(T_e) = D_{n0} \sqrt{1 + (E/E_C)^2} \]

but….in practice, \[D_n(E) \approx D_{n0} \left(\frac{D_n}{\mu_n} = \frac{2u_{so}}{q} \right) \]

a failure of the electron temperature model!
outline

1) Quick introduction
2) Current Equation
3) Qualitative features of high field transport
4) Saturated velocity
5) Electron temperature model
6) Survey of results
7) Brief summary

<111> Silicon: low-field

\[\bar{E}_z = -100 \text{ V/cm} \]

\[\langle v_z \rangle = 8.1 \times 10^4 \text{ cm/s} \]

\[\mu_n(\bar{E}_z) = 810 \text{ cm}^2/\text{V-s} \]

\[u = 0.04 \text{ eV} \quad (1.5k_B T / q = 0.39 \text{ eV}) \]

\[u_z = 0.0135 \text{ eV} \quad (u_z / u = 0.34) \]

\[u_{\text{drift}} \sim 10^{-7} \text{ eV} \quad (u_{\text{drift}} / u \sim 10^{-5}) \]

\[n(x,y,z)/n = 0.33 / 0.335 / 0.335 \]

(simulations performed with DEMONs on www.nanoHUB.org)
\(E_z = -10^5 \text{ V/cm} \)
\(\langle v_z \rangle = 1.04 \times 10^7 \text{ cm/s} \)
\(\mu_n (E_z) = 104 \text{ cm}^2/\text{V-s} \)
\(u = 0.364 \text{ eV} \quad (1.5 k_B T / q = 0.039 \text{ eV}) \)
\(u_{cc} = 0.145 \text{ eV} \quad \left(u_{cc} / u = 0.40 \right) \)
\(u_{drift} = 0.008 \text{ eV} \quad \left(u_{drift} / u = 0.02 \right) \)
\(n(x,y,z)/n = 0.336 / 0.331 / 0.333 \)

(simulations performed with DEMONs on www.nanoHUB.org)
\(E_z = -10^5 \) V/cm
\(<v_z> = 0.98 \times 10^7\) cm/s
\(\mu_n(E_z) = 98\) cm\(^2\)/V-s
\(u = 0.346\) eV \((1.5k_B T / q = 0.039\) eV\)
\(u_{zz} = 0.138\) eV \((u_{zz} / u = 0.40)\)
\(u_{\text{drift}} = 0.007\) eV \((u_{\text{drift}} / u = 0.02)\)
\(n(x,y,z)/n = 0.306 / 0.309 / 0.385\)

(simulations performed with DEMONs on www.nanoHUB.org)
outline

1) Brief introduction
2) Current Equation
3) Qualitative features of high field transport
4) Saturated velocity
5) Electron temperature model
6) Survey of results
7) **Quick summary**

summary

1) High-field transport leads to field-dependent mobilities and diffusion coefficients (when the field varies slowly in space and time).

2) The electron temperature approach provides a qualitative (and sometimes quantitative) way to view high-field (hot carrier) transport.

3) Rapidly varying electric fields lead to “off-equilibrium”, “non-local” or “non-stationary” transport effects that cannot be described with (local) field-dependent field dependent transport parameters.
questions

1) Quick introduction
2) Current Equation
3) Qualitative features of high field transport
4) Saturated velocity
5) Electron temperature model
6) Survey of results
7) Brief summary