
ECE-656: Fall 2009

Lecture 34:
Ensemble Effects

in Non-Local Transport

Professor Mark Lundstrom
Electrical and Computer Engineering

Purdue University, West Lafayette, IN USA

Lundstrom ECE-656 F09



Lundstrom ECE-656 F09
2
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rapidly varying electric fields

 E x

 

↑
−E x

t →

 υz = −µnE z

↑

υx

actual
υ(t)
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Monte Carlo simulation

Fig. 8.9  Evolution of the distribution 
function during a velocity overshoot 
transient.  The average drift velocity 
and energy are shown in (a), and the 
evolution of the corresponding 
distribution function is shown in (b).  
The results were obtained by Monte 
Carlo simulation of electron transport 
in silicon by E. Constant [8.10].

p. 335 of Lundstrom 
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Rees effect (GaAs)

Fig. 8.10 (a) Applied electric field vs. time. (b) Ave. drift velocity vs. time. (c) Ave. 
electron energy vs. time. (Monte Carlo simulations from E. Constant [8.10].

p. 336 of Lundstrom 

 E z
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velocity overshoot

pdx = px Let’s find an equation for the ave. x-directed momentum.

 

dpdx

dt
= −qE x −

pdx

τm

But, we have ignored diffusion (an ensemble effect).

 

du
dt

= −qυdxE x −
u − u0( )
τ E

Let’s find an equation for the ave. x-directed momentum.u = E p( )

 
υdx t( )= −µnE x 1− e− t / τm( )  

u t( )= u0 + q τ E µnE x
2 1− e− t / τE( )
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momentum and energy balance

 

dpdx

dt
= −qE x −

pdx

τm

What effect do these spatial gradients have?

 

du
dt

= −qυdxE x −
u − u0( )
τ E

 

dPx

dt
= −

d 2Wxx( )
dx

− qnE x −
Px

τm

Px = n px = npdx

 

dW
dt

= −
d FW( )

dx
+ J xE x −

W −W0

τ E

W = n E p( ) = nu



Question: If we change the horizontal axis to distance, what 
does the steady-state velocity vs. position characteristic look 
like?
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temporal vs. spatial transients

 E x 

↑
−E x

t or x→

υdz t( )

↑
υdx

x = υdz ′t( )
0

t

∫ d ′t ?



↑

n x( )
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carrier density vs. position

 E x 

↑
−E x

t →

Steady-state current is constant:  J nx = n x( )q υx x( )
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carrier velocity vs. position

 E x 

↑
−E x

t →

↑

n x( )

υdz t( )

↑

υdx x( )
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a familiar example

↑

∆n x( )

xWB

high-field collector
∆n x( )≈ ∆n 0( ) 1− x

WB







J n ≈ qDn
∆n 0( )

WB

J nx = n x( )q υx x( )

↑

υ x( )
υ x( ) ∝

1
1− x WB
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example Monte Carlo simulations
DEMONs

1D, steady-state 
Monte Carlo 
simulation for Si and 
GaAs

Piecewise constant 
electric field profiles.

http://nanohub.org/resources/1934
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low-high field structure

periodic boundary conditions

J nx = n x( )q υx x( )

n x( )
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low-high field structure

periodic boundary conditions

υ x( )
u x( )

0.039 eV



velocity histograms
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 E = −10 V/cm

 E = −105 V/cm



energy histograms
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 E = −10 V/cm

 E = −105 V/cmn E( )= f E( )D E( )

n E( )∝ e−E kBT E
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off-equilibrium nanoscale MOSFETs

υSAT

2009 IEDMS -Lundstrom
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low-high-low field structure

periodic 
boundary 
conditions

velocity 
undershoot

u x( )> u0
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temporal vs. spatial transients

Fig. 8.13  (a) Applied electric field in 
time and space.  (b) Average velocity 
versus position for a pulse applied in 
space (solid line) and time (dashed 
line).  (c) Steady-state carrier density 
(solid line() and energy (dashed line.) 
The results were obtained by Monte 
Carlo simulation of electron transport 
in GaAs by E. Constant [8.10].

p. 340 of Lundstrom 

z = υ ′t( )d ′t
0

t

∫
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ballistic launching ramps in HBTs

Question: How do we 
experimentally tell whether base 
transport is ballistic or diffusive?

Answer: Look at the base current.

IB ∝
tt

τ n

tt =WB υball

tt =WB
2 2Dn

ballistic:

diffusive:Hiroki Nakajima, Jap. J. of Appl. Phys., 
46, pp. 485–490, 2007.
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base transit time scaling

P.E. Dodd and M.S. Lundstrom, “Minority electron transport in InP/lnGaAs 
heterojunction bipolar transostors,” Appl. Phys. Lett., 61, 27,1992 

~80% traverse a 300A base 
ballisticaly or quasi-ballisticaly



24

base transit time scaling

Dodd and Lundstrom, APL, 61, 
27,1992 

n0υinj

nmw Dn W( )

n0υinj = 1− Γ( )n0υinj + nmw Dn W( )

n0

nmw

= Γ
υinj

Dn W( )

1− Γ( )n0υinj
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