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first: let’s finish up L34

1) Review of velocity overshoot

2) Steady-state, spatial transients
3) Heterojunction launching ramps
4) Repeated velocity overshoot

5) Questions?
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temporal vs. spatial transients
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Fig. 8.13 (a) Applied electric field in
time and space. (b) Average velocity
versus position for a pulse applied in
space (solid line) and time (dashed
line). (c) Steady-state carrier density
(solid line() and energy (dashed line.)
The results were obtained by Monte
Carlo simulation of electron transport
in GaAs by E. Constant [8.10].

p. 340 of Lundstrom
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can VO be maintained over large distances?
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Fig. 8.14 (a) A series of electric field
Impulses in time or space. (b)
Expected average velocity versus time
profile. (c) Expected steady-state
velocity vs. position profile.

p. 340 of Lundstrom
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outline

1) Schottky barriers
2) Transport across a thin base

3) High-field collectors
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a familiar problem with strong gradients
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pn junction: energy balance
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1) equilibrium:
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pn junction: under bias

2
T _4 (é} 2 _ 3nk T Z/2
T £ ¢ <TE>Jn EA EC(X)
2) forward bias: = £,(%)
£ >0
J <0 £:<0
X
T <T, po>
3) reverse bias:
J >0  F2>0 FB: J,0g£<0 cooling

T>T u,<u RB: J gZ>0 heating

8



Schottky barriers: diffusion theory

solve:

¢Bn

J =nqu Z +k,Tu dn/dx Ec(X)

n(O): n, n —W)z N,

result:
IV, )= N 2O /T (™ 1)
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Schottky barriers: TE theory

assume.

ballistic transport

result:

(V ) CI o Won/KaT (qV & —l)

. L
DD fails when: ,unf(O)> 7T but why, what went wrong?
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Schottky barriers: aside

TE result:

1(v,)=1 % A Y

This result can be easily obtained by solving the ballistic BTE.
See Lecture 13.
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outline

1) Schottky barriers
2) Transport across a thin base

3) High-field collectors
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diffusion across a thin base
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Fick’s Law describes diffusion across bases that are many mfps long.
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why does DD fail?
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diffusion velocity vs. conc. gradient
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D+ must be reduced for high concentration gradients.



Schottky barriers

—| Is very large.
dx yard E’
D < D°
Deff 0
My = < U
"k T/q

The mobility, [, should be reduced in a
forward-biased PN junction even
though the carrier are not heated.

u (O)—) v,

DD fails when: 4 #(0)> ;
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IS Fick’s Law wrong?

X—
W

& << U We just showed that we can get around this

W 4 problem by reducing D,, but....

U i =
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thin base transport again

" collector
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Fick’s Law In a thin base

D n(0)— (W)

collector

Ws A
Turi@r ‘Eur
F= n(l/l(g)ur \\\\\\\\\
\\\\\\\\\ n(W;)>0
n(W)— 0 | T ’
* 140, /(D,/ W) s
B

1
F = /7(0) (D /W)

Ur
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Fick’s Law

D 1
F=n(0)—= x )
D /W.
We 1+( h/ B) An(0) collector
v \
Ur
54/;<<UT F—)/?(O)ﬁ/;

L, >>v, F—n(0)v,

B

No need to reduce D because dn/dx = 0 when Wg << A

Fick’s Law always holds — no matter how small the base!
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outline

1) Schottky barriers
2) Transport across a thin base

3) High-field collectors
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how good Is the collector?

'XQU collector
19
R LN T

An(0)
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backscattering from the collector

_)

_ ﬂ‘O
T dt+ W,
A
T.=1- R.~ 20
¢ © Qg+

See Sec. 8.8 of
Lundstrom

Ec(X)

Lundstrom ECE-656 F09

X—>

23



guestions

1) Schottky barriers
2) Transport across a thin base

3) High-field collectors
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Question & Answer 1
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