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“the semiconductor equations”
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“the drift-diffusion equation”

p p pJ pq V qD pµ= − ∇ − ∇
  

1) How is the DD equation derived?

2) What determines the mobility and diffusion coefficient?

3) What physics does it miss?

4) How do we describe transport without the DD equation?
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“bottom-up” vs. “top down”

p p pJ pq V qD pµ= − ∇ − ∇
  

Historically, the DD equation was developed to describe transport for 
small gradients in concentration and potential in structures that were 
large compared to the mean-free-path for scattering. As time went on, it 
was extended to describe smaller and smaller structures.

In ECE-656, we turned this around and started by examining transport in 
small structures, and then we worked up to larger structures.
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current at the nanoscale
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If we apply a bias between 
the two contacts, what 
current flows?

channel
~ 30 nm

gate oxide
SiON ~ 1.1 nm
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L3:  Landauer model

I = 2q
h

T E( )M E( ) f1 − f2( )dE∫

1) A difference in Femi functions cause current to flow

2) M(E) density of conducting channels

3) T(E):  transmission (0 < T < 1)

4) Important assumptions:
-contacts are “ideal” (absorbing, in equilibrium)
-inelastic scattering only in contacts
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conductance

I > 0 when V2 > V1 because f1 > f2: EF 2 = EF1 − q V2 −V1( )

I = 2q
h

T E( )M E( ) f1 − f2( )dE∫

When (V2 – V1) is small, f1 − f2( )≈ − ∂f0

∂E
q∆V( )f1 ≈ f2 ≈ f0

G =
I
∆V

=
2q2

h
T E( )M E( ) −

∂f0

∂E






dE∫ 2q2

h
=

1
12.7kΩ
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L5-7:  nanoresistors

G =
1
R
=

2q2

h
T E( )M E( ) −

∂f0

∂E






dE∫ 2q2

h
=

1
12.7kΩ

For T = 0K or for strongly degenerate systems, −∂f0 ∂E( )≈ δ EF( )

G =
2q2

h
T EF( )M EF( )

For ballistic conductors, T = 1.

M(E) is the number of conducting channels at energy, E.
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L4: Density of states / Density of modes

Carrier densities are determined by the density of states.

Current flow is determined by the density of modes.

To determine M(E): 

1D:   simply count the subbands

2D:  M(E) ~ width of the resistor, W

3D:  M(E) ~ cross-sectional area, A
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DOS depends on bandstructure and dimensionality
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DOM depends on bandstructure and dimensionality

  
M1D E( )= Θ E − ε1( )
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DOM and bandstructure

For a simple E(k), and given dimensionality, L4 shows 
how we can work out M(E).

For a numerical table of E(k), the prescription for 
determining M(E) is described in L17. 
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ballistic vs. diffusive

Lundstrom ECE-656 F09

T E( )= λ E( )
λ E( )+ L λ is the “mean-free-path for backscattering”

G =
2q2

h
T EF( )M EF( )

 1) Ballistic :              λ >> L, T ≈ 1 G =
2q2

h
M EF( )

 2) Diffusive :            λ << L, T <<1 G =
2q2

h
M EF( )λ EF( )

L

Explains why current ~ 1/L (1D), W/L (2D), and A/L (3D)
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mobility and diffusion coefficient

G =
2q2

h
T E( )M E( ) −

∂f0

∂E






dE∫ =
2q2

h
T EF( )M EF( )

Conventionally: G = nqµn

For T = 0K: For non-degenerate conditions:

µn =
qτ EF( )

m*
µn =

Dn

kBT q

Dn =
υT λ

2
υT =

2kBT
πm*
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three ways to write the diffusive conductance

For T = 0K: G =
2q2

h
T EF( )M EF( )= 2q2

h
λ EF( )

L
M EF( )

For 2D, diffusive, T = 0K: G2 D = σ S
W
L

σ S =
2q2

h
λ EF( )M EF( ) W1) 

σ S = nS qµn µn =qτ EF( ) m*( )2) 

σ S = q2D2 D EF( )Dn EF( ) Dn EF( )= υ 2 EF( )τ EF( ) 2( )3) 
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L10:  Landauer and the DD equation

 
Jn = −nqµn

dV
dx

+ qDn

dn
dx

In = −
2q2

h
T E( )M E( ) −

∂f0

∂E






dE∫







∆V T E( )= λ E( )

λ E( )+ L
≈
λ E( )

L

J n =
In

A
= −

2q2

h
T E( )M E( )

A
−
∂f0

∂E






dE∫








∆V
L ∆Fn = −q∆V

 
Jn = σ n

d Fn q( )
dx

T

σ n =
2q2

h
λ E( )M E( )

A
−
∂f0

∂E






dE∫
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the DD equation

 
Jn = σ n

d Fn q( )
dx

T

σ n =
2q2

h
λ E( )M E( )

A
−
∂f0

∂E






dE∫

n x( )= NC e Fn x( )−EC (x)( ) kBT (Boltzmann statistics)

 
J n = nqµnE x + kBTµn

dn
dx

The Landauer approach also gives us a derivation of the DD equation 
and an understanding of its underlying assumptions.
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L8:  driving forces for current flow

I = 2q
h

T E( )M E( ) f1 − f2( )dE∫

Anything that causes a difference in Fermi functions 
leads to current flow.

1)  Differences in Fermi level (caused by differences in voltage)

2)  Differences in temperature.

For small difference (linear transport):  

f1 − f2( )≈ −
∂f0

∂E






q∆V − −
∂f0

∂E






E − EF( )
T

∆T
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physics of the Peltier effect

xcontact 1

EF1

T1

E

bottom of CB

electrons absorb 
thermal energy, 

E - EF1

V

electrons 
dissipate energy, 

E - EF2

contact 2

EF 2 = EF1 − qV

T2

electrons 
leave contact 
2 at the Fermi 

energy, EF2

electrons enter 
contact 1 at the 

Fermi energy, EF1

Net power 
dissipated: 

PD = IV

cold hot
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coupled current equations

Lundstrom ECE-656 F09

IQ = T SG[ ]∆V − K0∆T

I = G∆V − SG[ ]∆T
(electrons carry charge)

(electrons carry thermal energy)

∆V = RI − S∆T
IQ = −π I − Ke∆T

alternative form:

R:  resistance
S:  Seebeck coefficient
π:  Peltier coefficient
Ke: thermal conductance

G = 1 R = 2q2 h( )I0

S = −
SG[ ]
G

= −
kB

q






I1

I0

Ke =
2kB

2T
h







I2 −
I1

2

I0











π = TS

I j =
E − EF

kBTL







j

T E( )M E( ) −
∂f0

∂E






dE
−∞

+∞

∫
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DD and thermoelectric effects

Just as the Landauer approach in the diffusive limit leads to a 
DD equation when T is constant, we can do the same with 
temperature gradients.  

J n = σ n
d Fn q( )

dx
+ ST

dT
dx

 
E x = ρJ x + S dT

dx

J x
Q = π J x −κ e

dT
dx

S = ST σ n

π = TS
S =

kB

−q





δ +

EC − EF

kBT
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The equilibrium distribution function

f0

E

1

0.5

EF

f0 ≈ e− E−EF( )/kBT << 1

ln f0

EEF

(nondegenerate)

E >> EF

f0 =
1

1+ e E−EF( )/kBT

For low-bias transport, the distribution function is very nearly the 
equilibrium distribution.
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The non-equilibrium distribution function

To find the distribution function under bias, we should 
solve the Boltzmann Transport Equation (BTE).

After solving the BTE, we can find any quantity of interest:

( ) ( ) ( ), , ,
p

n r t p f r p tφ φ=∑
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L12:  The Boltzmann Transport Equation

( )
( )e

d k
F r

dt
=








( )1( )g kt E k tυ  = ∇  






( ) ( )
0

0 ( )
t

gr t r t dtυ ′ ′= + ∫
 

semiclassical transport
ˆ

r e p
df f f F f Cf
dt t

υ∂
= + •∇ + •∇ =
∂





( ) ( ) ( ) ( )

( ) ( ) ( )

ˆ , , , 1

, 1

p

p

Cf r p t S p p f p f p

S p p f p f p

′

′

′ ′= −  

′ ′− −  

∑

∑
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solution to the BTE

ˆ
r e p

f f F f Cf
t

υ∂
+ •∇ + •∇ =

∂





( )ˆ , , 0Cf r p t =
 1)  Equilibrium: 

Fermi level and temperature are constant

2)  Ballistic:   
( )ˆ , , 0Cf r p t =
 

Each state is populated according to an equilibrium Fermi 
function.
n(x) = D1(x1, E)∫ f0 (EF1)+ D2 (x1, E) f0 (EF 2 )dE



26

filling states in a ballistic device

E
EC (x)

EF1

EF 2 = EF1 − qVA
contact 1 contact 2

x1

E(k)

k

ETOP

x
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relaxation time approximation

( ) ( )0ˆ
r e p

f

f p f pf f F f Cf
t

υ
τ

 −∂
+ •∇ + •∇ = = −  ∂  

 





The RTA can be justified for:

1) near-equilibrium conditions

2) isotropic or elastic scattering
τ f = τm
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relaxation time approximation

( ) ( )0ˆ
r e p

f

f p f pf f F f Cf
t

υ
τ

 −∂
+ •∇ + •∇ = = −  ∂  

 





 E x

 dpx = −qτ 0E x

f px( )

px

displaced 
Maxwellian

( ) ( ) 0
0 f x

x

ff p f p q
p

τ ∂
= +

∂
  E

  
Jn = nqµnE x + qDn

dn
dx

Dn = υx
2τ f

µn =
q τ f

m*

τ f ≡
Eτ f E( )

E

X ≡
X f0 E( )

k
∑

f0 E( )
k
∑
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BTE vs. Landauer

BTE:
-requires an E(k) for the semi-classical treatment
-”hard” to apply boundary conditions
-works best in the diffusive regime
-B-fields readily incorporated
-anisotropic transport readily treated
-can be mathematically complex

Landauer:
-does not require an E(k)
-readily treats small devices with idealize boundary conditions
-works from the diffusive to ballistic regime
-physically transparent
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L17:  BTE vs. Landauer (mathematics)

G =
2q2

h
I0

I0 = Σ E( ) −
∂fS

∂E






dE∫

( ) ( )2
2 x f k

k

hE E E
L

υ τ δΣ = −∑


λ E( )≡ 2
υx

2τ f

υx

( ) ( )
2 x k

k

hM E E E
L

υ δ= −∑


( ) ( )

( )
k

k

k
k

E E

E E

δ

δ

−
=

−

∑
∑






T E( )= λ E( )
L

I0 = T E( )M E( ) −
∂fS

∂E






dE∫

G =
2q2

h
I0

Σ E( )= T E( )M E( )
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B-fields

( ) ( )0ˆ
r e p

f

f p f pf f F f Cf
t

υ
τ

 −∂
+ •∇ + •∇ = = −  ∂  

 





eF q q Bυ= − − ×


 

E

( )i ij jJ Bσ=


E ( ) 0 1
1

ij
H z

H z

B
B

B

σ σ
µ

µ

=  
− 

 + 



0 0 HJ Bσ σ µ= − ×
 

 

E E

(2D)

(Hall effect)
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L18:  Strong B-fields

σ ij Bz( )= nqµn

1+ µnBz

1 −µnBz

µnBz 1













1)  A magnetic field affects both the diagonal and off-diagonal 
components of the magneto-conductivity tensor.

2) Small magnetic field means: ω cτ << 1µnBz << 1 ω c =
qBz

m*

(parabolic bands)

3) Landau levels develop.


En = n + 1
2







hω c
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scattering

T E( )= λ E( )
λ E( )+ L

1) Landauer:

1) How is this equation derived?
2) How is mfp for backscattering related to the scattering time

λ E( )∝υ E( )τ E( )

2) BTE: ( ) ( ) ( ) ( ) ( ) ( )ˆ , 1 , 1
p p

Cf S p p f p f p S p p f p f p
′ ′

′ ′ ′ ′= − − −      ∑ ∑       

How is the transition rate, S(p,p’) computed?

3) General:
How do we simply describe the physical effects of scattering
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L19:  characteristic times

( ) ( )
, 0

1 ,
pE

ES p p
p Eτ ′ ↑

∆′=∑


 





p t = 0( )

t = 0 t ≈ τ

t ≈ τm ≥ τ
t ≈ τ E > τm ≥ τ

( ) ( )
,

1 ,
p

S p p
pτ ′ ↑

′= ∑


 



( ) ( )
,

1 , z

pm z

pS p p
p pτ ′ ↑

∆′=∑
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L21: Fermi’s Golden Rule

( ) ( )22, p pS p p H E E Eπ δ′′ ′= − − ∆
 





p

p′

( , )SU r t

′E = E0 + ∆E ∆E = 0 for a static US

  for an oscillating SE Uω∆ = ± 

( ) ( ) ( )1 , f
p

S p p D E
pτ ′↑

′= ∝∑


 



For an electron with energy, E, its 
scattering rate is proportional to the density 
of final states at energy, E (1D, 2D, 3D)

*
, ( )p p f S iH U r drψ ψ

+∞

′
−∞

= ∫ 
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scattering in semiconductors

defects

• ionized impurities
• neutral impurities
• dislocations
• surface roughness
• alloy

carriers

• electron-electron
• electron-plasmon
• electron-hole

phonons

• intravalley
-ADP
-ODP
-POP
-PZ

• intervalley
-acoustic
-optical

screening screening
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covalent vs. polar semiconductors

covalent

x

E

100100

polar

x

E

100 111

E

Γ

1.0

ADP + 
equivalent IV

E

Γ

0.03 0.30 1.0

POP 
ABS

POP 
EMS

IV
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L26:  scattering in quantum wells

( ) ( ) ( ), ,2
0

,

2 21 2
2 2 2

n n n nD
ac

n n

D E
U

δ δπ
τ

′ ′

′

+ +
= = Γ


↑
1

τ1, ′n E( )

E
ε1 4ε1

3Γ0 2

5Γ0 2

7Γ0 2

9ε1

1 τ1,1

1 τ1,1 +1 τ1,2

1 τ1,1 +1 τ1,2 1 τ1,3

Note: energy is 
referenced to the bottom 
of the first subband.
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L28:  moments of the BTE

The quantities of interest to device researchers are 
moments of the distribution function:

( ) ( ) ( ), , ,
p

n r t p f r p tφ φ=∑


   

These quantities satisfy a continuity equation:

n
F G R

t
φ

φ φ φ

∂
= −∇ + −

∂





A clear prescription for generating a continuity (or balance) 
equation exists, but simplifying the resulting equations for use in 
practice is an art.
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example:  the drift-diffusion equation again

( ) ( ) *
ipp q

m
φ = −


( ) ( ), ,nin r t J r tφ =
 

( ),
2n

n m n n

J r t
J nq W

t
τ µ µ

∂
+ = + ∇

∂






 

E

µn =
q τm

m*
Wij = n

piυ j

2

assume:
i) W is diagonal
ii) near-equilibrium conditions
ii) slow variations in time and space

DD equation
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L29:  four balance equations

( ) ( )0, Wx
nx x

E

W r t W WdF J
t dx τ

∂ −
= − + −

∂



E

( ) [ ]( ), nxd J qn r t
t dx

−∂
= −

∂



( ),
2nx xx

m nx n x n

J r t dWJ nq
t dx

τ µ µ
∂

+ = +
∂



E

0th moment of BTE

1st moment of BTE

2nd moment of BTE

3rd moment of BTE
( )

*

,
3 W

W W

FW xx
F Wx x F

qF r t dXF n u
t m dx

τ
τ τ

∂
+ = − −

∂



E
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L31: Monte Carlo simulation

  E =E xx̂
dp q
dt

= −




E
×

×

×

×

×

x

y

1) “free flight” for tC seconds.

2) update E(tC-) and r (tC-)

3) identify collision

4) update E(tC+) and p (tC+)

5) Set t = 0 and repeat

r1

r2

r3, r4

1) free flights:  semi-classical equations of motion

2) scattering:   quantum mechanical transition rate S(p,p’)

z
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L32: hot carrier transport

 E x

υx

104  V/cm

107  cm/s
Si

GaAs  
υdx = −µnE x = −

q τm

m* E x

 
J nxE x =

n u − u0( )
τ E

 τm ↓ as u ↑



covalent vs. polar semiconductors

44
E

Γ

E

Γ

0.03 0.30

covalent

x

E

100100

polar

x

E

100 111



field-dependent DD equation

45

 
J nx = nqµnE x + qDn

dn
dx

Goal: Find mobility and diffusion coefficient without solving BTE

In a bulk semiconductor, f is determined by E, so there is a 
one-to-one mapping between E and f. 

 µn E( )  Dn E( ) Electric field dependent mobility and diffusion 
coefficient.

( ), ,nD f r p t  
 ( ), ,n f r p tµ   

 

In general, however:

 
J nx = nqµn E( )E x + qDn E( )dn

dx

µn = q τm m* Dn µn = 2uxx q
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L33:  non-local transport

µn f[ ]

 E

x

 µn E 1( )

 µn E 2( )

The concept of a field-dependent mobility applies only 
when the electric field changes slowly with position.

“nonlocal transport”
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velocity overshoot

103 V/cm 103 V/cm105 V/cm

VO occurs in the presence of scattering when the energy 
relaxation time is longer than the momentum relaxation time.
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non-local transport in nanoscale MOSFETs

υSAT

2009 IEDMS -Lundstrom
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ballistic vs. diffusive transport

EF1

L

f1 E( )

EF1
EF 2

f2 E( )
W

X
X

X

X
X

X

X

source drain

EF1
EF 2

f2 E( )
W





υ
f1 E( )

EF1

(scattering from boundaries assumed to be negligible)

diffusive

ballistic
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local density-of-states

D3D (E) =
1
Ω

δ E − Ek( )
k
∑

Local density of states (L13):

Di (E, x)
i = 1 or 2 for contact 1 or 2

In a ballistic device (L3):

N x( )= D1 E, x( ) f1 E( )+ D2 E, x( ) f2 E( ) dE∫

EC (x)
EF1

EF 2 = EF1 − qVA

contact 1

contact 2

x1

k

ETOP

x

E E k( )
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quantum transport

source + drain-injected LDOS in 
a carbon nanotube MOSFET

( )

( ) ( ) ( )

3

*

1( )D k

k

D E E E

r r E E

δ

ψ ψ δ

= −
Ω

→ −

∑

∑
k

k

 

See:  “Physics of Nanoscale MOSFETs,” 
NCN Summer School, July 2008
http://nanohub.org/resources/5306



52

quantum transport

source + drain-injected LDOS in 
a carbon nanotube MOSFET

fillable by drain

fillable by source
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the drift-diffusion equation

p p pJ pq V qD pµ= − ∇ − ∇
  

1) Still describes transport in a very large number of cases

2) ECE-656 has taught you how to relate mobility and diffusion coefficient to 
material parameters and it suggests how we can engineer these parameters 
with strain and quantum confinement.

3) We have also learned about the assumptions underlying the DD equation –
(basically slow variations in time and space and applications to devices that 
are many mfp’s long).

4) We also learned that some problems cannot be treated by the DD equation –
ballistic transport, non-local semiclassical transport, and quantum transport.

5) Finally, we learned some new techniques and how they related to the DD 
equations (Landauer approach, BTE, and an introduction to quantum transport. 
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