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“the semiconductor equations”

Conservation Laws:

~

-

-

Constitutive Relations:

—

xe,E =—ke,VV

~
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“the drift-diffusion equation”

—

J, =—pau, YV —qD,Vp

1) How is the DD equation derived?
2) What determines the mobility and diffusion coefficient?
3) What physics does it miss?

4) How do we describe transport without the DD equation?
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“bottom-up” vs. “top down”

—

J, =—pau, YV —qD,Vp

Historically, the DD equation was developed to describe transport for
small gradients in concentration and potential in structures that were
large compared to the mean-free-path for scattering. As time went on, it
was extended to describe smaller and smaller structures.

In ECE-656, we turned this around and started by examining transport in
small structures, and then we worked up to larger structures.
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current at the nanoscale

If we apply a bias between
the two contacts, what gate oxide
current flows? SION~ 1.1 nm

channel

~ 30 nm
5



L3: Landauer model

1= T(EYM(EX £~ £)dE

1) A difference in Femi functions cause current to flow
2) M(E) density of conducting channels
3) T(E): transmission (0 < T < 1)

4) Important assumptions:

-contacts are “ideal” (absorbing, in equilibrium)
-inelastic scattering only in contacts



conductance

29
== | T(E)YM(E)( £ - £)dE
| >0 when V, >V, because f; >f,: E.,=E,-q9(V-V)

When (V,—V,)issmall, £f=ft=~f (£-1£)~-=2(qAV)

vl reme- e oo
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L5-7: nanoresistors

1 2q of, 2 1
C=%=" IT(E)M(E)(_a_Ej aE h o 127k

For T = OK or for strongly degenerate systems, (-0%/0E)~ 5(E;)
2
G= 7‘72 T(E.)M(E;)

For ballistic conductors, T = 1.

M(E) is the number of conducting channels at energy, E.
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L4: Density of states / Density of modes

Carrier densities are determined by the density of states.
Current flow is determined by the density of modes.

To determine M(E):

g 1D: simply count the subbands

2D: M(E) ~ width of the resistor, W

. 3D: M(E) ~ cross-sectional area, A .
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DOS depends on bandstructure and dimensionality

L 2m Dip :
D,p(E)= ﬂh\/ P-4 | \
>E
* D2D'T
DZD(E):A:hZ@(E—gl)
> E
D3D,T
DBD(E):Qm*\/Zm*(E—EC)
27 / }E
(E(k)=E +n%k?/2m")
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DOM depends on bandstructure and dimensionality

M, (E)=0(E-¢) ,

> E
M, (E)=W sz*iif—gl) 1
i
m’ M3DT
Mo (E)= Ao —(E-Ec)
/ >E

(E(k)=E. +n%k*/2m")
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DOM and bandstructure

For a simple E(k), and given dimensionality, L4 shows
how we can work out M(E).

For a numerical table of E(k), the prescription for
determining M(E) is described in L17.
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ballistic vs. diffusive

A(£)
7- E = I “ _ _ : "
( ) P ( E)+ / A is the “mean-free-path for backscattering
- 2¢°
1) Ballistic : A>> L T~1  G=—- M(E;)
2) Diffusive: A<<L, T<<l G= % M(EF)/I(LEF)

G= % T(E-)M(E,)

Explains why current ~ 1/L (1D), W/L (2D), and A/L (3D)
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mobility and diffusion coefficient

_29 j T(E)/\/I(E)( ) 0E = E( T(E.)M(E,))

Conventionally: G=nqu,

For T = OK: For non-degenerate conditions:
L, = 9 (E¢) H “
! m kBT q
D v, (1) 2k, T



three ways to write the diffusive conductance

ForT=0K: G= % T(E-)M(E, )= 2/‘:2 Z(LEF)/\//(EF)

For 2D, diffusive, T = OK: G,, = 05%/

1) o= 29 /1(/_-‘ YM(E )W
2) 0s=1Nsqu, (:Un = qT(E/—‘)/m*)

3) o.=¢D,,(E)D,(E) (D,(E-)=0"(E-)r(E-)/2)
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L10: Landauer and the DD equation

dVv dn

J :—nqyn&+q ) dx

{zqij(E)M(E)[ )a’E}AV r(g)=AE)_ AE)

Jﬁ%?{%f T(E) M/(f)(— 2@ df}%/ AF,=-gAV
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the DD equation

d(F,/
S o

T

n(x)= N, o Eey ke (Boltzmann statistics)

an
= nqu€  + KT, P

The Landauer approach also gives us a derivation of the DD equation
and an understanding of its underlying assumptions.
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L8: driving forces for current flow

2
/==X [T(E)M(E)( £~ £)aE
Anything that causes a difference in Fermi functions
leads to current flow.
1) Differences in Fermi level (caused by differences in voltage)

2) Differences in temperature.

For small difference (linear transport):

(1- é)z[ a;;] gA V—[— %) G

OF O0E) T
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physics of the Peltier effect

*
electrons absorb
thermal energy,
E-Eq

cold /
i

electrons enter
contact 1 at the
Fermi energy, Eg;

contact 1

En

electrons
dissipate energy,
E-Ep

bottom of CB

Net power
dissipated:
Pp =1V

hot
Epp=Eq—qV

electrons
leave contact
2 at the Fermi
energy, Eg,

19
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coupled current equations

/= GAV-|SG|AT
(electrons carry charge)

l,=T[SG|AV- KAT
(electrons carry thermal energy)

alternative form:

AV=RI-SAT
l,=-ml- KAT

R: resistance

S: Seebeck coefficient
. Peltier coefficient
Ke: thermal conductance

G=1YR=(2q/h)I,

_[s6] [ k) 4,
°=76 - quo
=18

(2K /2
= J{Z‘TJ

Lundstrom ECE-656 F09

20



DD and thermoelectric effects

Just as the Landauer approach in the diffusive limit leads to a
DD equation when T is constant, we can do the same with
temperature gradients.

al F
J =0, (,,/C])+ .S'Tﬂ-
ax ax
F-pi+st  s-s/o
ax SZ(&MM EC—EF}
Jf:ﬂjx_,(eﬂ- =TS —-q ks T
ax
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The equilibrium distribution function

For low-bias transport, the distribution function is very nearly the
equilibrium distribution.

1
b= e fr e oy
A | In £
E>>E,
1
054
|
I >
E. E E, E
Lundstrom ECE-656 F09 (nondegenerate)
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The non-equilibrium distribution function

To find the distribution function under bias, we should
solve the Boltzmann Transport Equation (BTE).

After solving the BTE, we can find any quantity of interest:

Lundstrom ECE-656 F09
23



L12: The Boltzmann Transport Equation

semiclassical transport
d(hlZ) _ df:ﬁf +50Vrf+lfecvpf:éf
= E () dt ot

Lundstrom ECE-656 F09
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solution to the BTE

%+5-vrf+ﬁe-vpf = Cf

1) Equilibrium: Cf (F,p,t)=0
Fermi level and temperature are constant

Cf (F, B,t) =0
2) Ballistic: ( )

Each state is populated according to an equilibrium Fermi
function.

M0 = [ DX, E) §(En)+ Dy(X, E) £(E,,) dE

Lundstrom ECE-656 F09
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filling states in a ballistic device

contact 1 k contact 2
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relaxation time approximation

ﬂ+50Vrf +F, oV, f — Cf ::—( f(p)- fo(p)j
ot .

The RTA can be justified for:

1) near-equilibrium conditions

2) 1sotropic or elastic scattering

—
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relaxation time approximation

ﬂ+DoVrf +F oV f =Cf :_[f(p)—fo(p))

ot T,
. . of
f(Pp)="f(p)+ar &7
dn
J =nquZ +0qD_ i f(px)ﬂ £,
D/? — <U)2(Tf> [\
XEt(E \ displaced
C7<<Tf>> _ Zk: 6(£) ' Maxwellian
H, = <X>— ‘
! m Zk: 5(E)
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BTE vs. Landauer

BTE:

-requires an E(k) for the semi-classical treatment
-"hard” to apply boundary conditions

-works best in the diffusive regime

-B-fields readily incorporated

-anisotropic transport readily treated

-can be mathematically complex

Landauer:
-does not require an E(k)
-readily treats small devices with idealize boundary conditions
-works from the diffusive to ballistic regime
-physically transparent
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L17: BTE vs. Landauer (mathematics)

6-27 6-27
nh h°
= | z(E)(—z—@ 0E Ih=| T(E)M(E)[—Z—@ 0E
Z(E):%;Ufrlﬁ(E—Ek) 2(E)=T(E)M(E)
e 2.()5(E-E)
T(E):%E) /I(E)52<<|;—X|S> ()= kZ5(E—Ek)

I\/I(E):Z—r:_;|ux|5(E—Ek)
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B-fields

@w-vrf +F eV, f =Cf =—(f(p)_ fO(p)J

ot Ty
Ife :—qf_:—ql_jx é
‘Ji:Gij(B)Z'J gij(g):o'o_ |
1 —Hy Bz (2D)
) B L | +4u4B, 1
J=0,f —o,u, & xB (Hall effect)
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L18: Strong B-fields

ngu, 1 _/unBz
G”(B)_HCZ B 1

1) A magnetic field affects both the diagonal and off-diagonal
components of the magneto-conductivity tensor.
gB

Z

*

m
(parabolic bands)

2) Small magnetic field means: u,B,<<1 o7<<1 4 =

3) Landau levels develop. £ = [/7+ %j ho,

Lundstrom ECE-656 F09
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scafttering

A(£)
LE)+ L

1) Landauer: 7(£)=

1) How is this equation derived?
2) How is mfp for backscattering related to the scattering time

/I(E) oC U(E)T(E)

2) BTE: Cf =XS(p,B)f(p)[1-(P)]-28 (b, B) F (P)[1-f (P')]
P’ P’
How is the transition rate, S(p,p’) computed?

3) General:

How do we simply describe the physical effects of scattering

33



L19: characteristic times

- p(t=0) \ %,

VVVVVVY

) =P t=0 (~71

”
\
i

-
.~ AE {
) — /

E, [RT.>T7T,27T

[T, 27T
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L21: Fermi’s Golden Rule

EF=E+AE AE =0 for a static U,

AE == fiw for an oscillating U,

o, For an electron with energy, E, its
r( D’) =29 ( P, P )OC D; (E) scattering rate is proportional to the density
of final states at energy, E (1D, 2D, 3D)

Lundstrom ECE-656 F09 35



scattering in semiconductors

screening screening
{ defects carriers phonons}
lonized impurities  electron-electron e intravalley
neutral impurities  electron-plasmon -ADP
dislocations  electron-hole -ODP
surface roughness -POP
alloy -PZ
* intervalley
-acoustic
-optical
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covalent vs. polar semiconductors

covalent [_,_-“ £l polar
—
(100) (100) (100) (111)
> X R > X
T I
\Y
POP
equivalent IV ABS
E E

1.0 0.03 0.30 10 %



L26: scattering in quantum wells

1 2z, D,(E)(2+8,,) _ (2+6,,)
= Uac = 1_‘0
Ty h 2 2 2
/
T T,/2 Yo, +Y7,Y7,

1 sr,02 |
W (E) 3r, /2

Note: energy is
referenced to the bottom Lundstrom ECE-656 F0O9 38
of the first subband.



L28: moments of the BTE

The quantities of interest to device researchers are
moments of the distribution function:

v (F)=24(P)F (7. 1)

These gquantities satisfy a continuity equation:

on, _
E:—V°F¢ +G¢ — R¢

A clear prescription for generating a continuity (or balance)
equation exists, but simplifying the resulting equations for use in
practice is an art.
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example: the drift-diffusion equation again

=\ _ () Pi ~ _
#(P)=(-a)= n,(F,t)=3,(F.t)
) oJ (Tt B, )
Jo+(7n) ”(,gt )=nwnf + 24, VW
_ q<Tm> W. = /7< p/U/>
lun - m* Yy
assume. :
1) W is diagonal
i) near-equilibrium conditions - DD equation
i) slow variations in time and space

40
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L29: four balance equations

on(r.t)  d(J,/(9)]

ot dx
(t >5‘]”X(F’t)+J = + 24,
m ot nx q:un X H dX
oW (F,t) ARy g_(w -W,)
ot dx e <TE>
ok, (T,t q{7x, dX,,
<TFvv> Wé(t )+FWX 3 <m* >UEX_< o) dx

Lundstrom ECE-656 F09

Oth moment of BTE

1st moment of BTE

2nd moment of BTE

3rd moment of BTE
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1)
2)
3)
4)
5)

L.31: Monte Carlo simulation

“free flight” for t- seconds.
update E(t.") and r (t)
identify collision

update E(t-*) and p (t:")
Sett =0 and repeat

h

5

1314

Y — F=Ffx

AN

d_p’__ -
dt 9z X\

=

X
o

\ "

1) free flights: semi-classical equations of motion

2) scattering: quantum mechanical transition rate S(p,p’) 42



L32: hot carrier transport

()

10" cm/s

|
10* V/cm

Lundstrom ECE-656 F09
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covalent vs. polar semiconductors

covalent £

—

(100)

(100)

E polar
V
(100) (111)
X

0.03

0.30 44



field-dependent DD equation

an

Toe= ML+ GD,—0 p1, = z,)/m D, u,=2u,/q

Goal: Find mobility and diffusion coefficient without solving BTE

In general, however: yn[f(F, f),t)] Dn[f(F, r),t)]

In a bulk semiconductor, f is determined by &, so there is a
one-to-one mapping between £ and f.

w,(£) D, (%) Electric field dependent mobility and difusion
coefficient. on
J = ngu,(EE + gD, (£ )E(

45



L33: non-local transport

E “nonlocal transport”
u,(£,)

ﬂn[f] /un(EZ)

The concept of a field-dependent mobility applies only
when the electric field changes slowly with position.
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velocity overshoot

) o

103V/icm  10°V/cm 103 V/cm 035

2.0 1

N .............................................. ...... — _. 0.3
1.510?... ........................... ....................... .................................. . HEE

R — - 10.2

1.010" |
- T B ... 4015

..... | T - 0.1

...................................

Average velocity (cm/s)
L
o
Q,

.-._ ............... ... ...... . "l.._‘_ ..................... _E u.ﬂs

Kinetic energy per electron (eV)

0.0 10"
0 0.5 1 1.5
Position (pLm)

VO occurs in the presence of scattering when the energy

relaxation time is longer than the momentum relaxation time.
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non-local transport in nanoscale MOSFETS

Y | T ¥ T T T T T 3.0x107 | | | | B | | | t
O |
= 2.0x10
=y
=
gL
TC; 1.0%107
-
0.0
0.0 -001 002 003 004 0.05 0.0 0.01 002 003 004 005
Position along Channel (um) Position along Channel (mm)

Frank, Laux, and Fischetti, IEDM Tech. Dig., p. 553, 1992
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ballistic vs. diffusive transport

source drain

e 4

diffusive /

yy

N

ballistic

/

/

W

(scattering from boundaries assumed to be negligible) 49



local density-of-states

Do(6)= =T 5(E- )

E
/ /
Local density of states (L13): i \ j contact 2
F e JOP T === oS g
D(E, X) | E.(X) x 44/(—5. _
| =1 or 2 for contact 1 or 2 )'g‘ F2 _ "A
contact 1 X

In a ballistic device (L3):
N(X)= [ D(E X) £(E)+ D,(E x) £(E)]dE
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guantum transport

51

LDOS(x,E)
0@ 0.4
|
1;;‘-0.5 L 0.3
&
]
g -1 2
15 |I i iy '.."II . ) I 'l.I .1
Al G R b My
AT :
Il |! L LR H. Il* {‘.llmla.ll.:! .!l: I A '|'.“\‘I “- ﬂ
10 20 a0 40
Position, nm

source + drain-injected LDOS in
a carbon nanotube MOSFET

See: “Physics of Nanoscale MOSFETSs,”
NCN Summer School, July 2008

http://nanohub.org/resources/5306



quantum transport

LDOS(x.E

OF 0.4
305 0.3
&

] .
g -1 0.2
1.5 ST PRI A "‘_ 0.1
LA AR L i A
| RI* btk [T T
LS R q. *# J.‘nllﬁ*tlm .||| ! [ y .'|'.FI * ﬂ
10 20 30 40

Position, nm

source + drain-injected LDOS in
a carbon nanotube MOSFET

52

LDOS{x E)

Enengy, eV

fillable by source

LDOS(x.E)

fillable by drain



the drift-diffusion equation

—

J,=-pgu,VV —-qD Vp
1) Still describes transport in a very large number of cases

2) ECE-656 has taught you how to relate mobility and diffusion coefficient to
material parameters and it suggests how we can engineer these parameters
with strain and quantum confinement.

3) We have also learned about the assumptions underlying the DD equation —
(basically slow variations in time and space and applications to devices that
are many mfp’s long).

4) We also learned that some problems cannot be treated by the DD equation —
ballistic transport, non-local semiclassical transport, and quantum transport.

5) Finally, we learned some new techniques and how they related to the DD
equations (Landauer approach, BTE, and an introduction to quantum transport.
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