

Network for Computational Nanotechnology (NCN)

Berkeley, Univ. of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Nanoelectronic Modeling (NEMO) Motivation and Background

Gerhard Klimeck Dragica Vasileska

1965 Gordon Moore => Moore's Law

Number of Components per Integrated Circuit

a Self-Fulfilling Prophesy

 From <u>http://www.intel.com/technology/mooreslaw/index.htm</u>

nonoHUB Technical Developments to enable Moore's Law

Today's CPU Architecture Heat becoming an unmanageable problem

The need for device modeling

- Increased costs for R&D and production facilities, which are becoming too large for any one company or country to accept.
- 2. Shorter process technology life cycles.
- 3. Emphasis on faster characterization of manufacturing processes, assisted by modeling and simulation.

TCAD: Technology for Computer Aided Design

- Evaluating "what-if" scenarios rapidly
- Providing problem diagnostics
- Providing full-field, in-depth understanding
- Providing insight into extremely complex problems/phenomena/product sets
- Decreasing design cycle time (savings on hardware build lead-time, gain insight for next product/process)
- 1. Shortening time to market

Some TCAD Prerequisites Are:

- Modeling and simulation require enormous technical depth and expertise not only in simulation techniques and tools but also in the fields of physics and chemistry.
- Laboratory infrastructure and experimental expertise are essential for both model verification and input parameter evaluations in order to have truly effective and predictive simulations.
- Software and tool vendors need to be closely tied to development activities in the research and development laboratories.

R. Dutton, Stanford University, the father of TCAD.

- 1964: Gummel introduced the decoupled scheme for the solution of the Poisson and the continuity equations for a BJT
- 1968: de Mari introduced the scaling of variables that is used even today and prevents effectively overflows and underflows
- 1969: Sharfetter and Gummel, in their seminal paper that describes the simulation of a 1D Silicon Read (IMPATT) diode, introduced the so-called Sharfetter-Gummel discretization of the continuity equation

H. K. Gummel, "A self-consistent iterative scheme for one-dimensional steady state transistor calculation", *IEEE Transactions on Electron Devices*, Vol. 11, pp.455-465 (1964).

A. **DeMari**, "An accurate numerical steady state one-dimensional solution of the p-n junction", *Solid-state Electronics*, Vol. 11, pp. 33-59 (1968).

D. L. Scharfetter and D. L. Gummel, "Large signal analysis of a Silicon Read diode oscillator", *IEEE Transaction on Electron Devices*, Vol. ED-16, pp.64-77 (1969).

Coupling of Transport Equations to Poisson and Band-Structure Solvers

D. Vasileska and S.M. Goodnick, Computational Electronics, published by Morgan & Claypool, 2006.

 Semiclassical FLUID models (ATLAS, Sentaurus, Padre)

»Drift - Diffusion

»Hydrodynamics

1. PARTICLE DENSITY

- 2. velocity saturation effect
- 3. mobility modeling crucial ■

- 1. Particle density
- 2. DRIFT VELOCITY, ENERGY DENSITY
- 3. velocity overshoot effect

problems

Semi-classical PARTICLE-BASED Models:

»Direct solution of the BTE Using Monte Carlo method

- ✓ Eliminates the problem of Energy Relaxation Time Choice
- ✓ Accurate up to semi-classical limits
- ✓ One can describe scattering very well
- ✓ Can treat ballistic transport in devices

Quantum Mechanical TUNNELING

2. SIZE-QUANTIZATION

3. QUANTUM INTERFERNCE EFFECT

- Quantum-mechanical WIGNER Function and DENSITY Matrix Methods:
 - »Can deal with correlations in space
 - **»BUT NOT WITH CORRELATIONS IN TIME**

Advantages: Can treat SCATTERING

Disadvantages: LONG SIMULATION TIMES

Non-Equilibrium Green's Functions (NEGF)

- MOST fundamental and accurate
- Considered by many to be the MOST difficult quantum approach
- FORMULATION OF SCATTERING rather straightforward and theoretically sound including incoherence and irreversibility
- IMPLEMENTATION OF SCATTERING rather difficult
- Computationally INTENSIVE

Length Scales and Interactions Determine the Most Appropriate Model

	$L << l_{e-ph}$			$L \sim l_{e-ph}$	$L >> l_{e-ph}$
	$L < \lambda$	$L < l_{e-e}$	$L >> l_{e-e}$		
Transport Regime	Quantum	Ballistic	Fluid	Fluid	Diffusive
Scattering	Rare	Rare	e-e (Many), e-ph (Few)		Many
Model:					
Drift-Diffusion					
Hydrodynamic	Quantum Hydrodynamic				
Monte Carlo					
Schrodinger/Green's					
Functions	Wave				
Applications	Nanowires,	Ballistic			
	Superlattices	Transistor	Current IC's	Current IC's	Older IC's

nonoHUB Technical Developments to enable Moore's Law

- Industry plans have a 5-10 year horizon
- Industry has been on time:
 - 32nm node predicted in 2004 and announced 2009
- There are NO technically viable solutions beyond 2015

A Second Look at Moore's Law Shrinking Device Sizes

Exponential performance increase:

- Enabled by
 - device miniaturization
 - chip size increase
- Limited by:
 - Costs of fabrication

A Third Look at Moore's Law Countable number of electrons

Exponential performance increase:

- Enabled by
 - device miniaturization
 - chip size increase
- Limited by:
 - Costs of fabrication
 - Discrete atoms/electrons

A Third Look at Moore's Law Countable number of electrons

Exponential performance increase:

- Enabled by
 - device miniaturization
 - •chip size increase
- Limited by:
 - Costs of fabrication
 - Discrete atoms/electrons

Quantum Dots

Artificial Atoms - Electron Boxes

1D Heterostructures

- Lasers and detectors
- Fast electronic devices

Device Trends and Challenges

Observations:

- 3D spatial variations on nm scale
- Potential variations on nm scale
- New channel materials (Ge, III-V)

Questions / Challenges

- Strain ?
- Quantization?
- Crystal orientation?
- Atoms are countable; does granularity matter? Disorder?
- New material or new device?

Assertions of importance

- High bias / non-equilibrium
- Quantum mechanics
- Atomistic representation
 - » Band coupling, non-parabolicity, valley splitting
 - » Local (dis)order, strain and orientation

Quantum Transport far from Equilibrium

Available and Explored Theories

- The non-equilibrium Green function formalism underlies NEMO.
- All of the approaches shown were considered.
- Approaches in light blue were dropped. Approaches in dark blue were incorporated.

Semiconductor Industry has Fundamental Issues and Problems

- Driven by a revenue stream
 - => it must be cheaper and better
 - => so people throw away their old computers

- Devices are at the nanometer scale
 - => wavelength of the electrons
 - !!! Existing tools are not fundamentally quantum mechanics based
- Devices now consist of "countable number of atoms

 - !!! E s i g t p and base on the number theory

- De / Be receive to po much it ative de la seconda de la
 - !!! Existing tools cannot handle
 - QM, atomistic granularity, and thermal transport

Nanoelectronic Modeling - NEMO Assertions and Agenda

- Production level, industrial semiconductor devices:
 - »Show spatial arrangements in 3D no longer planar
 - »Have dimensions where atoms are countable
 - »Involve new materials
- Fundamental theory for modeling
 - »Needs to include high bias and carrier interactions
 - »Needs to be on an atomistic basis
 - »Has been developed: NEGF-Non-Equilibrium Green Functions
- Model implementations:
 - »Must be validated against experimental data
 - » Predictive
 - »Deliver physical insight
 - »Computationally efficient
- Must be taught to the next generation engineers!

22nm Node

