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Scattering Matrix approach

One matrix each for each interface: 4 S-matrices

Left Incident — Transmitted

Reflected € Right Incident

No particles lost!
Typically Left Incident wave is normalized to one.

Right incident is assumed to be zero. wen 258
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anoflUB =3+ Reminder: Single barrier

online simulation and more

*Transmission is finite under the barrier — tunneling!
*Transmission above the barrier is not perfect unity!
*Quasi-bound state above the barrier.

Transmission goes to one.

1.5 — 1.5 — 1.5 —

: . : ﬁ

Patential Energy (')
|
Energy (e
|
Energy (eV)

o= T T T T T T T I D_|—|—rrm|] T T TTImy T T T I D_|—|—rrn'r|] TTTIM] T TTIy T T T I
P 10 20 a0 40 1E-5 1E-4 1E-3 1E-2 1E-1 1E0 1E-5 1E-4 1E-3 1E-2 1E-1 1EQ0 i'\‘
Distance (nrm) Transmission Coefficient Reflection Coefficient e




* Double barriers allow a transmission probability of one / unity for discrete energies
* (reflection probability of zero) for some energies below the barrier height.

 This is in sharp contrast to the single barrier case

« Cannot be predicted by classical physics.
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Double barrier: Quasi-bound states
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* In addition to states inside the well, there could be states above the barrier height.

 States above the barrier height are quasi-bound or weakly bound.

* How strongly bound a state is can be seen by the width of the transmission peak.

» The transmission peak of the quasi-bound state is much broader than the peak for
the state inside the well.
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Effect of barrier height
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eIncreasing the barrier height makes the resonance sharper.

*By increasing the barrier height, the confinement in the well is
made stronger, increasing the lifetime of the resonance.

*A longer lifetime corresponds to a sharper resonance.
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Effect of barrier thickness
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e|[ncreasing the barrier thickness makes the resonance

sharper.

1E0

By increasing the barrier thickness, the confinement in the
well iIs made stronger, increasing the lifetime of the

resonance.

A longer lifetime corresponds to a sharper resonance.
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nanoriilig 2 Asymmetric barriers

online simulation and more
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*Transmission in the symmetric case goes to one for
resonance energies.

eTransmission in the non-symmetric case (second barrier is
thicker) does not go to one for resonance energies.

«Current in the non-symmetric case will always be less than

the symmetric case.
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nanoHUB <~ Potential Drop

online simulation and more
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eSymmetric structure (no bias) exhibit unity transmission on
resonance.

ePotential drop introduces asymmetry
=> transmission never reaches unity anymore

eIncreased asymmetry reduces resonance transmission /
current.

PURDUE Gerhard Klimeck %ﬁfm @i’



nanoirllB «:

U UG
online simulation and more

Double barrier energy levels Vs Closed system
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The well region in the double barrier case can be
thought of as a particle in a box.
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Particle in a box

» The time independent Schrodinger equation is
n o 0 0<x<L
— D () + X)W(X)= Ep(X) ) { <x<L,
2m dx’ where, () oo elsewhere

* The solution in the well is:

.| N — p—
w,(X)= Asin == x|, n=123,... VA 0 Vu 0
L, .
[
 Plugging the normalized wave-functions back into '/\ 4
the Schrodinger equation we find that energy ~ n=

levels are quantized.

AN _
w,(X)= isin[ﬂ X] —/ n=13
LX LX 2
=

2 2

E = L 1 1 F : n=1

2L X=0 Xx=1L
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Double barrier & particle in a box
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» Green: Particle in
a box energies.

* Red: Double
barrier energies
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* Double barrier: Thick Barriers(10nm), Tall Barriers(1eV), Well(20nm).

 First few resonance energies match well with the particle in a box
energies.

* The well region resembles the particle in a box setup.
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Open systems Vs closed systems
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* Double barrier: Thinner Barriers(8nm), Shorter Barriers(0.25eV), Well(10nm).
» Even the first resonance energy does not match with the particle in a box energy.
* The well region does not resemble a particle in a box.

« A double barrier structure is an OPEN system, particle in a box is a CLOSED
system.
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online simulation and more

Reason for deviation?

Potential profile o «\Wave-function
and resonance % penetrates into the
energies using £ barrier region.
tight-binding. : « The effective length
— of the well region is
° PR i T modified.
S, * The effective length

of the well is crucial
in determining the
energy levels in the
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First excited state
wave-function
amplitude using
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. o closed system.
tight binding. ! y
T S p ) o
_ Fosition (nm)y h 72-
015 — : m
Ground state : well

0.1

wave-function n=123K, 0<x<L,,
amplitude using

tight binding.
PURDUE ’ N F?Esitinn (nm} ” “ %i:’c” @:

005 —

Wave-funtion squarediMarmalizecd)



Key Summary

online simulafion und more

e Double barrier structures can show unity
transmission for energies BELOW the
barrier height ]
» Resonant Tunneling
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 Resonance can be associated
with a quasi bound state T TR T T
» Can relate the bound state to a particle in a box
» State has a finite lifetime / resonance width
» Open and closed systems differ significantly for
realistic barrier heights/widths
* Increasing barrier heights and widths:

» Increases resonance lifetime / electron
residence time

» Sharpens the resonance width

« Asymmetric barriers
» Reduce the unity transmission
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