

Network for Computational Nanotechnology (NCN)

UC Berkeley, Univ. of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Open 1D Systems: Formation of Bandstructure

Gerhard Klimeck, Dragica Vasileska, Samarth Agarwal

Reminder Transmission through Repeated wells

2 barriers =>1 resonance

3 barriers =>2 resonance

n barriers =>n-1 resonance

Comparison with Periodic structure

As the number of barriers is increased the electrons see no difference between the actual structure and a structure that is simply modeled as being repeated indefinitely (Periodic).

The Kronig-Penney model

- Problem: Energy levels in a periodic potential.
- Solve: Schrodinger equation for a periodic potential.
- Block theorem: Wave-function for a periodic potential satisfies,

$$\psi(x+a) = e^{ika}\psi(x)$$

'a': periodicity of the potential 'k': wave-vector.

- Using the Bloch theorem the allowed energy levels in a given periodic potential can be found.
- This approach is referred to as the Kronig-Penney model.

GaAs Well Comparison - 30 Barriers

E-k comparison

A GaAs structure with 6nm wells, 2nm barriers and 0.4eV barrier height is modeled as follows,

- PPL-Periodic structure repeated indefinitely.
- TB: 30 barriers using tight-binding.
- TM: 30 barriers using transfer matrices.

It can be seen that the results of these three approaches agree well.

GaAs Well Comparison - 80 Barriers

E-k comparison

A GaAs structure with 6nm wells, 2nm barriers and 0.4eV barrier height is modeled as follows,

- PPL-Periodic structure repeated indefinitely.
- TB: 80 barriers using tight-binding.
- TM: 80 barriers using transfer matrices.

It can be seen that the results of these three approaches agree well.

InAs Well Comparison - 30 Barriers

E-k comparison

An InAs structure with 6nm wells, 2nm barriers and 0.4eV barrier height is modeled as follows,

- PPL-Periodic structure repeated indefinitely.
- TB: 30 barriers using tight-binding.
- TM: 30 barriers using transfer matrices.

It can be seen that the results of these three approaches agree well.

- Finite superlattice with large number of repeated cells approaches the periodic potential model
- Transfer Matrix and effective mass tight binding give about the same result

0.5

E-k comparison

Normalized k vector

